

Academic Year

Sir M. Visvesvaraya Institute of Technology Bengaluru - 562157 Approved by AICTE | Affiliated to VTU Belagavi | Accredited by NAAC

Department of Mathematics

Course File

: SHUBA-R-N : 2023-24

Name of the Subject with code: FCE STE Semester and year 1 / 2024:

SL No	contents in Course File	Page Number
1.	Department Vision, Mission, PEOs, PSOs, POs	
2.	Subject Allotment order	
3.	Course Information sheet	
4.	Calendar of Events	
5.	Time Table of the class and Individual Time Table of the faculty	
6.	Student List	
7.	Syllabus copy for the course	
8.	Lesson Plan	
. 9.	Evaluation Pattern for the course	
10.	CO-PO-PSOs Mapping and justification	
11.	CO-PO Attainment sheet of the previous year for the same course Actions taken to improve the attainment and report MoM from DAAC(DEPT Academic Advisory Committee)	
12.	Lab Course Plan with CO/PO/PSO Mapping for Lab(IPCC) CO PO mapping print out sheet for Lab CO-PO Justification for the correlation given 1,2,3 for Lab CO-PO Attainment sheet for Lab CO-PO Attainment sheet of the previous year for the same lab course Continuous Improvement Evaluation (CIE) in Lab sheet.	
13.	Gaps in the curriculum as identified during the introduction of new scheme	
14.	Topics Beyond Syllabus to bridge the Gaps in the Curriculum	
15.	Internal Test Question papers with CO –PO mapping and Blooms Taxonomy with scheme of evaluation.	

16.	Internal Marks
17.	List of slow learners and attendance sheet of the remedial classes conducted and impact analysis.
18.	List of fast learners and their achievements
19,	Tutorial sheets(If applicable)
20,	Course Material
21	Pedagogical/Innovative Teaching
22.	Impact Analysis sheet of Assignment/Seminar/Workshop along with PO attainment
23.	Course end survey by the students.
24.	Student Feedback
25.	Result Analysis
26.	CO-PO Attainment sheet
27.	Additional Responsibilities if any

Rube R.N

Signature of Staff

Signature of HOD

Sir M. Visvesvaraya Institute of Technology Department of Mathematics

VISION

To achieve academic excellence in mathematics thus enabling students to have enhanced opportunities in the field of mathematics and engineering.

MISSION

To provide the students with a strong mathematical foundation which meets the requirement in the field of industry, research and higher education

Sir M. Visvesvaraya Institute of Technology Department of Mathematics

Vision

To be a centre of excellence in technical and management education concurrently focusing on disciplined and integrated development of personality through quality education, sports, cultural and co-curricular activities.

To promote transformation of students into better human beings, responsible citizens and competent professionals to serve as a valuable resource for industry, work

environment and society.

Mission

- To impart quality technical education, provide state-of-art facilities, achieve high quality in teaching-learning & research and encourage extra & co-curricular activities.
- To stimulate in students a spirit of inquiry and desire to gain knowledge and skills to meet the changing needs that can enrich their lives.
- To provide opportunity and resources for developing skills for employability and entrepreneurship, nurturing leadership qualities, imbibing professional ethics and societal commitment.
- To create an ambiance and nurture conducive environment for dedicated and quality staff to upgrade their knowledge & skills and disseminate the same to students on a sustainable long term basis.
- To facilitate effective interaction with the industries, alumni and research institutions.

Sir M. Visvesvaraya Institute of Technology Department of Mathematics

Programme Educational Objective (PEO):

1. To provide a degree course suitable for students enabling them to apply the concepts of mathematics to students.

2. To prepare students for further study and in preparing successful career in

industry and R&D organization.

3. To provide students with knowledge of mathematics and in preparing successful career in industry and R&D organization.

	Program Outcomes					
Sl. No.	Description	POs				
1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and computer science and business systems to the solution of complex engineering and societal problems.					
2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering and business problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	PO2				
3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	PO3				
4	Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	PO4				
5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations	PO5				
6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering and business practices.	PO6				
7	Environment and sustainability: Understand the impact of the professional engineering solutions in business societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.	PO7				
8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering and business practices.	PO8				
9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.	PO9				
10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	PO10				
11	Project management and finance: Demonstrate knowledge and understanding of the engineering, business and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.	POII				
12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	PO12				

SIR M VISVESVARAYA INSTITUTE OF TECHNOLOGY

Department of Mathematics

Subject Allotment-2023-24(EVEN SEMESTER)

Name of the staff: SHUBA R N

Designation: Assistant Professor

Subject allotted:

SL. No.	Name of the subject with code	Semester	Theory/Lab
1	Mathematics-II for EEE stream (D sec)	II	Theory
2	Discrete Mathematical Structures	IV	Theory

SL. No.	Title	Subject code	Semester
1	Mathematics Lab	BMATS201	II Sem I & K sec
	(using Python)	BMATE201	II Sem E sec

Signature of the faculty

HOD

COURSE INFORMATION SHEET

Course Name / Code	Mathematics-II for EEE stream(BMAT201)					
Degree / Branch	B.E/					
Course Credit	4					
Course Category	Core Subject/Professional Elective/ Open Elective / Laboratory Course					
	Course Teacher Name	Contact Details				
Course Teacher Contact Details		Mobile	E-mail			
	SHUBA R N	9620442126	subha_math@sirmvit.edu			
Head of the Department	Dr Sreelakshmi N		•			

ವಿಶ್ವೇಶ್ವರಯ್ಯ ತಾಂತ್ರಿಕ ವಿಶ್ವವಿದ್ಯಾಲಯ

("ವಿ ಆ ಯು ಅಧಿನಿಯಮ 1994"ರ ಅಡಿಯಲ್ಲ ಕರ್ನಾಟಕ ಸರ್ಕಾರದಿಂದ ಸ್ಥಾಪಿತವಾದ ರಾಜ್ಯ ವಿಶ್ವವಿದ್ಯಾಲಯ)

VISVESVARAYA TECHNOLOGICAL UNIVERSITY

(State University of Government of Karnataka Established as per the VTU Act, 1994)

Phone: 0831-2498100 / 240546

Fax : 0831-2405467

Email: registrar@vtu.ac.in
Web: https://vtu.ac.in

Reference: VTU/BOS/AC2023-24(EVEN)/6251

NOTIFICATION

Subject:

Tentative.Academic Calendar for II sem B.E./B.Tech/B.Plan/B.Des/B.Arch,

IV sem B.Arch./B.Plan., and VI sem of B.Arch/B.Plan, regarding...

Reference:

Hon'ble Vice-Chancellor's approval Dated: 08.02.2024

The tentative academic calendar concerned with EVEN semesters of undergraduate programs(II sem B.E./B.Tech/B.Plan/B.Des/B.Arch, IV sem B.Arch./B.Plan., and VI sem of B.Arch/B.Plan) is attached to this notification for reference to all the stakeholders concerned.

The principals of non-autonomous, constituent, and autonomous engineering colleges and chairpersons of university departments are hereby informed to bring the academic calendar to the attention of all concerned.

If any suggestions/clarification/corrections, email-sbhalbhavi@vtu.ac.in

Sd/-

REGISTRAR

To.

- The Principals of all Non-autonomous/ constituent / Autonomous Engineering Colleges under the ambit of VTU Belagavi.
- The chairperson, of the Department of Mechanical Engineering /Civil Engineering /Computer Science and Engineering& Communication Electronics Engineering of the University.

Copy to.

- To the Hon'ble Vice-Chancellor through the secretary to VC, VTU Belagavi for information
- 2. The Registrar (Evaluation), VTU Belagavi for information and needful.
- 3. The Regional Directors (I/c) of all the regional offices of VTU for circulation.
- 4. The Director ITI SMU, VTU Belagavi for information and to make arrangements to upload the Academic Calendar on the VTU web portal.
- 5. The Director of Physical Education, VTU Belagavi for information
- 6. The Director, Central Placement Cell, VTU Belagavi for information
- 7. The Special Officer Library, VTU Belagavi for information
- 8. All the concerned Special Officer/s and Caseworker/s of the academic section, VTU, Belagavi.
- 9. Office copy

REGISTRAR

REGISTRAR

F/10/2

Academic Calendar for EVEN Semester of UG programs for the year 2023-24

	II semester B.E./B.Tech	II semester B.Plan/B.Arch/ B.Des	II semester B.Sc(Hons)	IV semester B.Arch.	IV semester B.Plan	VI Semester B.Arch.	VI semester B. Plan
Commencement of the Semester	06.03,2024	06.03.2024	04.03.2024	04.03.2024	04.03.2024	26.02.202	06.03.2024
Internship / Students Induction Program							
Commencement of Classes	06.03.2024	06.03.2024	06.03.2024	06.03.2024	06.03.2024	26.02.2024	06.03.2024
Last Working day of the Semester	29.06.2024	29.06.2024	29.06.2024	29.06.2024	29.06.2024	22.06.2024	29.06.2024
Practical Examination	01.07.2024 To 11.07.2024	01.07.2024 To 11.07.2024	01.07.2024 To 06.07.2024	01.07.2024 To 06.07.2024	01.07.2024 To 06.07.2024	25.07.2024 To 31.07.2024	01.07.2024 To 06.07.2024
Theory Examinations	15.07.2024 To 10.08.2024	15.07.2024 To 10.08.2024	08.07.2024 To 27.07.2024	08.07.2024 To 27.07.2024	08.07.2024 To 02.08.2024	08.07.2024 To 02.08.2024	08.07.2024 To 02.08.2024
Internship/Practical Exam for Lateral Entry Students					03.08.2024 To 31.08.2024		03.08.2024 To 31.08.2024
Internship Viva Voce/ Project viva			•			•••	
Commencement of NEXT Semester	19.08.2024	19.08.2024	19.08.2024	05.08.2024	02.09.2024	05.08.2024	02.09.2024

REGISTRAR
Visvesvaraya Technological University
BELAGAVI.

2/2

SIR M, VISVESVARAYA INSTITUTE OF TECHNOI 3Y, BANGALORE **DEPARTMENT OF MATHEMATICS** TIME TABLE FOR EVEN SEMESTER 2023-2024

FACULTY NAME: SHUBA R N

DESIGNATION: ASSISTANT PROFESSOR

I ACOLI I IIAII	L. SHODA KI								
TIME ⇒ DAY	9:00 AM TO 9:55 AM	9:55 AM TO 10:50 AM	10:50 AM TO 11:00 AM	11:00 AM TO 11:55 AM	11:55 AM TO 12:50 PM	12:50 PM TO 1:35 PM	1:35 PM TO 2:30 PM	2:30 PM TO 3:25 P.M.	3:25 PM TO 4:20 PM
MONDAY		2D		CS-C		←— E2	LAB>		
TUESDAY		2D - r	¥	CS-C	2		2D		
WEDNESDAY		CS-C	BREAK				·		
THURSDAY		CS-C	TEA				2D		
FRIDAY	←— K2	LAB	>				,		
SATURDAY			I1 LAB						

DETAILS OF FACULTY HANDING CLASSES

SL. NO.	COURSE TITLE	COURSE CODE
1	MATHEMATICS FOR ECE STREAM -II	BMATE201
2	MATHEMATICS LAB PYTHON[CSE]	BMATS201
3	MATHEMATICS LAB PYTHON[EEE]	BMATE201
4	DESCRETE MATHEMATICAL STRUCTURES	BCS405A

PREPARED BY: UMA S

DESIGNATION: ASSOCIATE PROFESSOR

SIGNATURE:

EMAN

APPROVED BY: Dr.UMA S K

DESIGNATION: PROFESSOR AND HOD

SIGNATURE: 8

Professor and Head - of to analogy

Sir M. Visvesvaraya Institute of Technology, Bengaluru-562 157

Academic Year: 2023-24 Time Table - Second Semester: With Effect From 06/03/2024

Sem /	Sec: II / D		BRANCH: E	EEE	ROOM NO: B209				Block Name: Basic Science		
TIME → DAY ↓	09.00 AM to 09.55 AM		09.55 AM to 10.50 AM	10.50 AM to 11.00 AM	to	11.55 AM to 12.40 PM	12.40 to 01.35		01.35 PM to 02.30 PM	02.30 PM to 03.25 PM	03.25 PM to 04.20 PM
Monday	BBEE	203	BMATE201	ÇAK	ESC-II		BPWS	K206	BPHYE202		G LAB K204E
Tuesday	BKSKK BKBKK		BMATE201	TEA BREAK	BPHYE202	LUI	BIDT	K258	BMATE201	LG	LG
Wednesda	y ETC-			IY LAB- LAB-D2 (LUNCH BREAK	ESC	C-II	FORU	M/CLUB ACTI	VITIES
Thursday	_	PHY LAB-D2 MATH LAB-D1 (M210)		TEA			ETC	C-II	BMATE201	BBEE203	LIB
Friday	ETC-	π	врнуе202	BREAK	ESC-II		BBEI	E203	LG	LIB	LIB
SI. NO.	Course		Course code		Course Title				Faculty Na	ames	Department
1.	ASC(IC)	BM	ATE201		Mathematics for l	s for EEE stream -II Ms. R.N. Shuba				Mathematics	
2.	ASC(IC)	BPF	HYE202		Applied Physics for	or EEE strea	EEE stream Dr. Jayashree L				Physics
3.	ESC	BBI	EE203		Elements of Elect	rical Engine	ering	Dr. Mahesh K			EEE
4.	ESC-II	BES	SCK204X		Engineering Science Course- II				Refer to the attache		
5.	ETC-II	BET	BETCK205X		Emerging Techno	logy Course	e -II		and room numbers		
6.	AEC		BPWSK206		Professional Writ				Mr. Vishwas		Humanities
7.	HSMS	BKS	SKK207/BKBK	K207	Samskrutika Kannada / Balake Kannada			-	da Mr. Prashantha BB & Mr. Ramkumar S		Humanities
8.	AEC/SDC	BID	DTK258 Innovation and						Dr. C.V. Mohan		EEE
,			Cla	ass Adv	isors: Ms. Jay	yashree &	Mr. Ra	ajesh	Kumar		

Time Table officer - TTO		Chief Time Table Officer - CTO	Principal	
Name	Dr. G.K. Prashanth	Mr. S.B. Halesh	Prof. S.G. Rakesh	
Signature	Prosbauth 4)	of solver ?	Siel and	

S	Sir M. Visves	varaya Institute of Technol	logy						
Bengaluru-562157									
,	Academic Coordination Cell								
	Acac								
Chemistry Cycle									
	Section wise Student List (Computer Science Engg.)								
Semester: II		A.Y: 2023-24							
Branch:	CS	Section: K	,						
Room No.: B1	10	W.E.F: 06-March-2024							
Class Advisors:		Mrs. Purnimaa S. Dixit & M	rs. Divya						
S.No	USN	Student name	Student Sign / Remarks						
1	1MV23CS128	RUCHIKA S V							
2	1MV23CS129	S KEERTHANA							
3	1MV23CS130	S SAI VENKATA ASHISH SAGABALA							
4	1MV23CS131	S SIRISHA							
5	1MV23CS132	SAHANA							
6	1MV23CS133	SAIKUMAR PUJARI							
7	1MV23CS134	SAISAKET DHANNURE							
8	1MV23CS135	SAKETH ALEVOORAYA K							
9	1MV23CS136	SAKSHAM TIWARI	,						
10	1MV23CS137	SAMEER RAJ							
11	1MV23CS138	SAMYAK							
12	1MV23CS139	SANDEEP KUMAR							
13	1MV23CS140	SANKETH R							
14	1MV23CS141	SANSKAR PANDEY							
15	1MV23CS142	SATYAM KUMAR							
16	1MV23CS143	SEMBETI NRUSIMHA ARYA VARDHAN							
17	1MV23CS144	SHAIK SIBGATHULLA							
18	1MV23CS145	SHANKAR B KORI							
19	1MV23CS146	SHASHWAT NAMDEO							
20	1MV23CS147	SHASHWAT PANDEY							
21	1MV23CS148	SHASHWAT SHAURYA							
22	1MV23CS149	SHASHWAT SHUKLA							
23	1MV23CS150	SHREYAS DODDAMANI							
24	1MV23CS151	SHUBHASHREE BABURAYA NAYAK							
25	1MV23CS152	SHYAM RAJU N							
26	1MV23CS153	SINDHU ADIVEPPA WADARATTI							
27	1MV23CS154	SMITHA M							
28	1MV23CS155	SNEHA Y M							
29	1MV23CS156	SONIKA G K							

Branch:	CS	Section: K	
30	1MV23CS157	SRUSHTI MANOHAR HOSAMANI	
31	1MV23CS158	SUBHOJIT DEY	
32	1MV23CS159	SUHAS T	
1/ 33	1MV23CS160	SUJAY JN	
2-34	1MV23CS161	SUPARN NAYAK	
35	1MV23CS162	SUPRABHA C ADIGA	
36	1MV23CS163	SWAPNA K Y	
37	1MV23CS164	SWETANSHU A	A
38	1MV23CS165	TANMAY SHARMA	
39	1MV23CS166	TEJASWINI N	
40	1MV23CS167	UJJWAL RAMAN A	
41	1MV23CS168	UJWAL KUMAR A	
42	1MV23CS169	UMME RUMAAN	
43	1MV23CS170	USHA RANI B M	
44	1MV23CS171	UTPAL KUMAR	
45	1MV23CS172	V B VARSHA BALASUBRAMANYA ♣	
46	1MV23CS173	VAIBHAV SINGH	
47	1MV23CS174	VAISHNAVI	
48	1MV23CS175	VALLAPUREDDY SHANMUKA	
49	1MV23CS176	VANDANA P B	
50	1MV23CS177	VARSHA H L	
51	1MV23CS178	VARSHA K N	
52	1MV23CS179	VIBHANSHI JAIN A	A
53	1MV23CS180	VIJAY V R	
54	1MV23CS181	VIKAS	
55	1MV23CS182	VIKRAM RAWAL A	
56	1MV23CS183	VINAYAK SARAF 🔑	A
57	1MV23CS184	VINUTHA V	
58	1MV23CS185	VISESH BAJPAI A	A
59	1MV23CS186	VISHWANATH SHIVANANDA HUBBALLI	
60	1MV23CS187	YAMANOORAPPA RATHOD	
61	1MV23CS188	YASHAS ALLAPPANAVAR	A
62	1MV23CS189	YASHASWI ANAND A	A
63	1MV23CS190	YASHWANTH A	

Sir M. Visvesvaraya Institute of Technology, Bangalore 562 157

Time: 10:00 a.m

2023 - 2024 Room No: E305

Course / Branch: B.E / EE

Test: 2

Date: 24 - 6 - 24

/FI= | Section:

Semester: II

Sub Code: BEMAT201

Academic Year

Invigilator's Name: Swaj kumar 13. P

	Invigitator	Student's Name	(G, 1	Booklet's	Student's Signature	Marks Obtained	l
Sl. No.	USN		11.	Number 41302	Morrosto	23	
1	1MV23EE001	ACHAL CHOURASIYA	14	41301	A CONTRACTOR	12,	11
2	1MV23EE002	ADARSH KUMAR G M	111	4130,	$\mathcal{P}_{\mathcal{P}}}}}}}}}}$	24	
3	1MV23EE003	ADITYA SURYA DEV N P	14	_	AKUKSA 10	17.	
4	1MV23EE004	AKARSHIKA SRIVASTAVA	10_	41305	(A)_	23	
5	1MV23EE005	AMBIKA SHATAGAR	14	41312	0	ad	
6	1MV23EE006	ANANYA SINGH	13_	41316	Anarya	14	
7	1MV23EE007	ANKIT KUMAR .	_8_	41313	of the name	17	
(8)	1MV23EE008	ARYA M		ABSE N	1 - Church	~ ~	
9	1MV23EE009	ARYA PRASAD S	7	41306	De S	07	1
10	1MV23EE010	ARYAN ANILRAO DESALE	9	41315		13	
11	1MV23EE011	ASTITWA SINGH	10	01312	Ashitvasu	17	1
12	1MV23EE012	BAIREDDY KALYANI	15	41314	dalyan	25	İ
13	1MV23EE013	BHARAT M HANASI	14	41311	- Lond	23	ļ
14	1MV23EE014	BHASKAR SINHA	12	41293	hane	20	
15	1MV23EE015	CHANDAN J	14	41318	Clandan J	24	!
16	1MV23EE016	CHEELAM VARUN REDDY	11	41297	Tag_	19	į 1
17							-
18							-
19							1
20							
21		1					
22							
23							
24							
25							
26							
27							
28							
29							
30							
					1		

No. of Booklets Issued: 16	No. of Unused Booklets Returned:
No. of Students Present: 15	No. of Students Absent: 1
Receiver's Name:	Receiver's Signature Invigilitor's Signature

18

Sir M. Visvesvaraya Institute of Technology, Bangalore 562 157

Time: 10.00 -11.00 AM

2023 - 2024 Room No: E309

Academic Year

Date: 24 |06 | 24 Course / Branch: B.E / EE

Test: 02

Section: 1

Semester: II

Sub Code: BMATC-201

Invigilator's Name: 1+85 nee Ranik

		14 CI MIGG RAILING			1
l. No.	USN	Student's Name	Booklet's Number	Student's Signature	Marks Obtained
1	1MV23EE017	DEEKSHITHA D G	41262	Detali la	18 1
2	1MV23EE018	DEEPIKA E	41481	Despikot	25
3	1MV23EE019	DIAMOND TIRTHANKAR RAJ	412 1866		085
4	1MV23EE020	DILEEP L	41478	Dileepi	159
5	1MV23EE021	FIZA KOUSAR	41480	Dise.	25
6	1MV23EE022	G K SPOORTHI	41261	SNothi	04
7	1MV23EE023	GAYATRI	41289	Coyatra	201
8	1MV23EE024	GIRISH T P	41274	Carrish-IP	13
9	1MV23EE025	HEMANTH K D	41479	Hemanth	16
10	1MV23EE026	JEEVAN	41268	Ferran	16
11	1MV23EE027	KEERTHANA B Y	41290	Keert Rote 0	251
12	1MV23EE028	LAKSHMI	41269	lakshin8	12
13	1MV23EE029	LAKSHMI H GOWDA	41263	Lat sline HG	123
14	1MV23EE030	LAVANYA R	41270	Les	17
15	1MV23EE031	LIKHITH S R	41264	Contlike	19
16	1MV23EE032	MAANYA S	41482	Manyes	25
17	1MV23EE033	MAHAMMAD ANEEF M	41265	duel . M	12
18	1MV23EE034	MANOHAR KUMAR	41267	Marrohat.	23
19					
20					
21					
22					
23					
. 24					
25					
26					
27					
28					
29					
30					

No. of Booklets Issued: 🛛 🖁	No. of Unused Booklets Returned:
No. of Students Present:	No. of Students Absent:
Receiver's Name:	
	Receiver's Signature Lovetlator's Signature

Sir M. Visyesvaraya Institute of Technology, Bangalore 562 157 Test:

Date: 24 6 24

Time: 10:00- 11:06

Academic Year 2023 - 2024 Room No: M010

Course / Branch: B.E / Section: Section:

Invigilator's Name: Sawi ha.

Semester: II

Sub Code: BMATE 201

_	Sl. No.	USN	Student's Name	Booklet's	Student's	Marks
	1	1MV23EE035	MAYANK KUMAR	Number	Signature	Obtained 1
L	2	1MV23EE036	MUSTAFA BOHRA	60 356	Mayank	20.
	3	1MV23EE037	NAINIKA	60357	Minika	17
	4	1MV23EE038	NANDINI APAAR	60358	Naudem	2
	5	1MV23EE039	NANDINI ARKACHARI	60360	Farfandu	23
	6	1MV23EE040	NANDITHA R	60359	Angul L	13
	7	1MV23EE041	NARSING	60354	ATT	16
	8	1MV23EE042	NAVEEN KUMAR	603 53	Never	14
	9	1MV23EE043	NAVEEN R	60351	Nowceal	0 6
	10	1MV23EE044	NIMISHA TRIPATHI	60352	Phi	22
	11	1MV23EE045	NIMISHITH GOWDA D P	60350	Note	25
	12	1MV23EE046	NITESH KUMAR SAH	60349	Witer	25
	13	1MV23EE047	NITISH KUMAR	60342	Mitish pu	0 -
	14			000		
	15					
	16					
	17					-
	18		(13)			
	19					
	20					
	21					
	22	2				
	23	3				
	2	4				
		5				
	2	6				
	-	27				
	-	28				-
	-	29				+
		30				

No. of Booklets Issued:	No. of Unused Booklets Returned:
No. of Students Present:	No. of Students Absent:
Receiver's Name:	Receiver Signature Invigitator's Signature
	110011111

Sir M. Visvesvaraya Institute of Technology, Bangalore 562 157 Test: Academic Year 6/20 2023 - 2024 Time: WIDD-11100 Course / Branch: B.E / Room No: BT202 Section: D

		TARION. B.E./ EE	Section: D	Semester: II	1120		1202
	Invigilator	's Name: Javo	J D	Semester: II		Sub Code:	BMATE 20
Sl. No.	USN						
1	1MV23EE048	OMKAR	tudent's Name		Booklet's Number	Student's Signature	Marks Obtained
2	1MV23EE049				41454	oy.	18.1
3	1MV23EE050	PATEL ADITI HIE	RALAL		ABSE	Nr-	
4	1MV23EE051	PIYUSH RATN			41455	light	25 %
5	1MV23EE052	POOJA P			41469	Rooja P	11
6	1MV23EE053	POOJA S N			41464	popa:SN.	19
7	1MV23EE054	PRAJWAL APPA		E	41465	Rhidha	24
8		PRANAV BHARI			41466	Organia.	13' 8
9	1MV23EE055	PRATHAM SHAI			414 67	128/2	24
	1MV23EE056	PRAVAAL RAJ N		8 .	41463	Charries	13 6
10	1MV23EE057	PREKSHA MUN	DRA		4 1468	Brokely	22,
11							
12							
13							
14							
15			. ~				
16							!
17		100					
19							
20		10)					
21							
22							
23	· · · · · · · · · · · · · · · · · · ·			1.20	1.21	,	
24			- MC	de	()	retec	-
25				· · · · · · · · · · · · · · · · · · ·	0000	10 0	
26					nato	1-3	191
27			,			01/07	124
28							
29							
30							
							!

No. of Booklets Issued:	No. of Unused Booklets Returned:
No. of Students Present: Q	No. of Students Absent:
Receiver's Name:	Receiver's Signature Invigilator's Signature

II Semester

C			
Course Title: Mathematics-II for	Electrical & Electronics Engi	neering Stream	
Course Code:	BMATE201	CIE Marks	50
Course Type	Integrated	SEE Marks	50
(Theory/Practical/Integrated)	_	Total Marks	100
Teaching Hours/Week (L:T:P: S)	2:2:2:0	Exam Hours	03
Total Hours of Pedagogy	40 hours Theory + 10 to 12 Lab slots	Credits	04

Course objectives: The goal of the course Mathematics-II for Electrical & Electronics Engineering Stream(22MATE21) is to

- Familiarize the importance of Vector calculus, Vector Space and Linear transformation for electronics and electrical engineering.
- **Have an insight** into solving ordinary differential equations by using Laplace transform techniques.
- **Develop** the knowledge of solving electronics and electrical engineering problems numerically.

Teaching-Learning Process

Pedagogy (General Instructions):

These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes.

- 1. In addition to the traditional lecture method, different types of innovative teaching methods may be adopted so that the delivered lessons shall develop students' theoretical and applied mathematical skills.
- 2. State the need for Mathematics with Engineering Studies and Provide real-life examples.
- 3. Support and guide the students for self-study.
- 4. You will also be responsible for assigning homework, grading assignments and quizzes, and documenting students' progress.
- 5. Encourage the students to group learning to improve their creative and analytical skills.
- 6. Show short related video lectures in the following ways:
 - As an introduction to new topics (pre-lecture activity).
 - As a revision of topics (post-lecture activity).
 - As additional examples (post-lecture activity).
 - As an additional material of challenging topics (pre-and post-lecture activity).
 - As a model solution of some exercises (post-lecture activity).

Module-1: Vector Calculus (8 hours)

Introduction to Vector Calculus in EC & EE engineering applications.

Vector Differentiation: Scalar and vector fields. Gradient, directional derivative, curl and divergence - physical interpretation, solenoidal and irrotational vector fields. Problems.

Vector Integration: Line integrals, Surface integrals. Applications to work done by a force and flux. Statement of Green's theorem and Stoke's theorem. Problems.

Self-Study: Volume integral and Gauss divergence theorem.

Applications: Conservation of laws, Electrostatics, Analysis of streamlines and electric potentials.

(RBT Levels: L1, L2 and L3)

Module-2:Vector Space and Linear Transformations(8 hours)

Importance of Vector Space and Linear Transformations in the field of EC & EE engineering applications.

Vector spaces: Definition and examples, subspace, linear span, Linearly independent and dependent sets, Basis and dimension.

Linear transformations: Definition and examples, Algebra of transformations, Matrix of a linear transformation. Change of coordinates, Rank and nullity of a linear operator, Rank-Nullity theorem. Inner product spaces and orthogonality.

Self-study: Angles and Projections. Rotation, reflection, contraction and expansion. Applications: Image processing, AI & ML, Graphs and networks, Computer graphics. (RBT Levels: L1, L2 and L3)

Module-3:Laplace Transform(8 hours)

Importance of Laplace Transform for EC & EE engineering applications.

Existence and Uniqueness of Laplace transform (LT), transform of elementary functions, region of convergence. Properties-Linearity, Scaling, t-shift property, s-domain shift, differentiation in the sdomain, division by t, differentiation and integration in the time domain. LT of special functionsperiodic functions (square wave, saw-tooth wave, triangular wave, full & half wave rectifier), Heaviside Unit step function, Unit impulse function.

Inverse Laplace Transforms:

Definition, properties, evaluation using different methods, convolution theorem (without proof); problems, and applications to solve ordinary differential equations.

Self-Study: Verification of convolution theorem.

Applications: Signals and systems, Control systems, LR, CR & LCR circuits.

(RBT Levels: L1, L2 and L3)

Module-4: Numerical Methods -1(8 hours)

Importance of numerical methods for discrete data in the field of EC & EE engineering

Solution of algebraic and transcendental equations: Regula-Falsi method and Newton-Raphson method (only formulae). Problems.

Finite differences, Interpolation using Newton's forward and backward difference formulae, Newton's divided difference formula and Lagrange's interpolation formula (All formulae without proof). Problems.

Numerical integration: Trapezoidal, Simpson's (1/3)rd and (3/8)th rules(without proof). Problems.

Self-Study: Bisection method, Lagrange's inverse Interpolation, Weddle's rule.

Applications: Estimating the approximate roots, extremum values, area, volume, and surface area.

(RBT Levels: L1, L2 and L3)

Module-5:Numerical Methods -2(8 hours)

Introduction to various numerical techniques for handling EC & EE applications.

Numerical Solution of Ordinary Differential Equations (ODEs):

Numerical solution of ordinary differential equations of first order and first degree - Taylor's series method, Modified Euler's method, Runge-Kutta method of fourth order and Milne's predictorcorrector formula (No derivations of formulae). Problems.

Self-Study: Adam-Bashforth method.

Applications: Estimating the approximate solutions of ODE for electric circuits.

(RBT Levels: L1, L2 and L3)

List of Laboratory experiments (2 hours/week per batch/ batch strength 15)

10 lab sessions + 1 repetition class + 1 Lab Assessment

10 lal	sessions + 1 repetition class + 1 Lab Assessment
1	sessions + 1 repetition class + 1 Lab Assessment Finding gradient, divergent, curl and their geometrical interpretation and Verification of
	Green's theorem
2	Green's theorem Computation of basis and dimension for a vector space and Graphical representation of
	1' transformation
3	Visualization in time and frequency domain of standard functions
4	Computing inverse Laplace transform of standard functions
-	a trivia tunctions
5	Laplace transform of convolution of two reactions by Regula-Falsi and Newton-Raphson
6	Laplace transform of convolution of two functions Solution of algebraic and transcendental equations by Regula-Falsi and Newton-Raphson
	method Interpolation/Extrapolation using Newton's forward and backward difference formula Interpolation/Extrapolation using Newton's forward and backward difference formula
7	Interpolation/Extrapolation using Newton's forward and backward difference (2/9)th rule
	former under the curve using Transcolual, Simpson's (175) and (5.5)
8	Solution of ODE of first order and first degree by Taylor's series and Modified Euler's
9	Solution of ODE of first order and first degree of Taylor
	method her and Milne's
10	method Solution of ODE of first order and first degree by Runge-Kutta 4 th order and Milne's
	predictor-corrector method
	Mot ab/Python/Scilah

Suggested software's: Mathematica/MatLab/Python/Scilab

Course outcome (Course Skill Set)

At the end of the course the student will be able to:

At the er	nd of the course the student will be able to.
CO1	Understand the applications of vector calculus refer to solenoidal, irrotational vectors,
	tingintagral and surface integral
CO2	Demonstrate the idea of Linear dependence and independence of sets in the vector space,
	and linear transformation
CO3	To understand the concept of Laplace transform and to solve initial value problems.
CO4	Apply the knowledge of numerical methods in solving physical and engineering
	phenomena.
CO5	Get familiarize with modern mathematical tools namely
	MATHEMATICA/MATLAB/PYTHON/ SCILAB

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50). The minimum passing mark for the SEE is 35% of the maximum marks (18 marks out of 50). A. student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination(SEE), and a minimum of 40% (40 marks out of 100) in the total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

The CIE marks for the theory component of the IC shall be 30 marks and for the laboratory component 20 Marks.

CIE for the theory component of the IC

- Three Tests each of 20 Marks; after the completion of the syllabus of 35-40%, 65-70%, and 90-100% respectively.
- Two Assignments/two quizzes/ seminars/one field survey and report presentation/one-course project totalling 20 marks.

Total Marks scored (test + assignments) out of 80 shall be scaled down to 30 marks

CIE for the practical component of the IC

- On completion of every experiment/program in the laboratory, the students shall be evaluated and marks shall be awarded on the same day. The 15 marks are for conducting the experiment and preparation of the laboratory record, the other 05 marks shall be for the test conducted at the end of the semester.
- The CIE marks awarded in the case of the Practical component shall be based on the continuous evaluation of the laboratory report. Each experiment report can be evaluated for 10 marks. Marks of all experiments' write-ups are added and scaled down to 15 marks.
- The laboratory test (duration 03 hours) at the end of the 15th week of the semester /after completion of all the experiments (whichever is early) shall be conducted for 50 marks and scaled down to 05 marks.

Scaled-down marks of write-up evaluations and tests added will be CIE marks for the laboratory component of IC/IPCC for 20 marks.

The minimum marks to be secured in CIE to appear for SEE shall be 12 (40% of maximum marks) in the theory component and 08 (40% of maximum marks) in the practical component. The laboratory component of the IC/IPCC shall be for CIE only. However, in SEE, the questions from the laboratory component shall be included. The maximum of 05 questions is to be set from the practical component of IC/IPCC, the total marks of all questions should not be more than 25 marks.

The theory component of the IC shall be for both CIE and SEE.

Semester End Examination(SEE):

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the subject (duration 03 hours)

- The question paper shall be set for 100 marks. The medium of the question paper shall be English/Kannada). The duration of SEE is 03 hours.
- The question paper will have 10 questions. Two questions per module. Each question is set for 20 marks. The students have to answer 5 full questions, selecting one full question from each module. The student has to answer for 100 marks and marks scored out of 100 shall be proportionally reduced to 50 marks.
- There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), should have a mix of topics under that module.

Suggested Learning Resources:

Books (Title of the Book/Name of the author/Name of the publisher/Edition and Year) Text Books

- 1. **B. S. Grewal**: "Higher Engineering Mathematics", Khanna Publishers, 44thEd., 2021.
- 2. E. Kreyszig: "Advanced Engineering Mathematics", John Wiley & Sons, 10thEd., 2018.

Reference Books

- 1. V. Ramana: "Higher Engineering Mathematics" McGraw-Hill Education, 11th Ed., 2017
- 2. Srimanta Pal & Subodh C.Bhunia: "Engineering Mathematics" Oxford University Press, 3rdEd., 2016.
- 3. N.P Bali and Manish Goyal: "A Textbook of Engineering Mathematics" Laxmi Publications, 10thEd., 2022.
- 4. C. Ray Wylie, Louis C. Barrett: "Advanced Engineering Mathematics" McGraw Hill Book Co., New York, 6th Ed., 2017.
- 5. Gupta C.B, Sing S.R and Mukesh Kumar: "Engineering Mathematic for Semester I and II", Mc-Graw Hill Education(India) Pvt. Ltd 2015.
- 6. **H.K. Dass and Er. Rajnish Verma:** "Higher Engineering Mathematics" S.Chand Publication, 3rd Ed.,2014.
- 7. James Stewart: "Calculus" Cengage Publications, 7thEd., 2019.
- 8. David C Lay: "Linear Algebra and its Applications", Pearson Publishers, 4th Ed., 2018.
- 9. **Gareth Williams:** "Linear Algebra with applications", Jones Bartlett Publishers Inc., 6th Ed., 2017.
- 10. Gilbert Strang: "Linear Algebra and its Applications", Cengage Publications, 4th Ed., 2022.

Web links and Video Lectures (e-Resources):

- http://nptel.ac.in/courses.php?disciplineID=111
- http://www.class-central.com/subject/math(MOOCs)
- http://academicearth.org/
- VTU e-Shikshana Program
- VTU EDUSAT Program

Activity-Based Learning (Suggested Activities in Class)/Practical-Based Learning

- **Ouizzes**
- Assignments
- Seminar

COs and POs Mapping (Individual teacher has to fill up)

COs				POs			7
	1	2	3	4	5	0	,
CO1	6						
CO2		,					
CO3							
CO4			6			ŀ	
CO5			Jarotoly Mani	1 Lovel	Low Mapped	l, Level 0- No	t Mappe

Level 1-Low Mapped, Level 2-Moderately Mapped, Level 3- Highly Mapped,

SIR M VISVESVARAYA INSTITUTE OF TECHNOLOGY, BENGALURU-562157 DEPARTMENT OF MATHEMATICS

COURSE NAME: - Mathematics-II for Electrical &

Electronics Engineering Stream COURSE CODE: BMATE201

LESSON PLAN-EVEN SEM

AY: 2023-24

Course Outcomes (Course skills Sets):

At the end of the course the student will be able to:

CO1: Understand the applications of vector calculus refer to solenoidal, irrotational vectors, line integral and surface integral.

CO2: Demonstrate the idea of Linear dependence and independence of sets in the vector space, and linear transformation.

CO3: To understand the concept of Laplace transform and to solve initial value problems.

CO4: Apply the knowledge of numerical methods in solving physical and engineering phenomena.

CO5: Get familiarize with modern mathematical tools namely

MATHEMATICA/MATLAB/PYTHON/SCILAB

Name of the Staff: SHUBA R N

D	ATE	TOPICS PLANNED	COs	POs	PI	RBT
FROM	ТО					
6/3/24	8/3/24	 Module-4: Numerical methods -1 Solution of polynomial and transcendental equations: Regula-Falsi and Newton-Raphson Methods-Problems. Finite differences, Interpolation using Newton's forward and backward difference formulae-problems. 	CO4	PO1& PO2	1.1.1	L1 L2 L3
11/03/24	15/03/24	 Newton's divided difference formula-Problems. Lagrange's interpolation formula-Problems. Numerical integration: Trapezoidal, Simpson's (1/3)rd and (3/8)th rules-Problems. 	CO4	PO1& PO2	1.1.1	L1 L2 L3
20/03/24	22/03/24	 Module-5: Numerical Methods -2 Numerical solution of ordinary differential equations of first order and first degree - Taylor's series method-Problems Modified Euler's method- Problems Runge-Kutta method of fourth order - Problems Milne's predictorcorrector formula- Problems 	CO5	PO1& PO2	1.1.1	L1 L2 L3
25/03/24	29/03/24	 Module-3: Laplace Transform. Existence and Uniqueness of Laplace transform (LT), transform of elementary functions, region of convergence. 	CO3	PO1& PO2	1.1.1	L1 L2 L3

		 Properties—Linearity, Scaling, t-shift property, s-domain shift, differentiation in the sdomain, division by t, differentiation and integration in the time domain 	502	DO1 9	111	T 1
1/04/24	05/04/24	 LT of special functions- periodic functions- Problems. Heaviside Unit step function-Problem 		PO1& PO2	1.1.1	L1 L2 L3
08/04/24	12/04/24	Unit impulse function-Problems. Inverse Laplace Transforms: Definition, properties, evaluation using different methods	CO3	PO1& PO2	1.1.1	L1 L2 L3
15/04/24	19/04/24	 convolution theorem – problems, Applications to solve ordinary differential equations 	CO3	PO1& PO2	1.1.1	L1 L2 L3
22/04/24	26/04/24	Module-1: Vector Calculus Vector Differentiation: Scalar and vector fields. Gradient, directional derivative, curl and divergence - physical interpretation solenoidal and irrotational vector fields. Problems	CO1	PO1& PO2	1.1.1	L1 L2 L3
29/04/24	03/05/24	Vector Integration: Line integrals, Surface integrals.	CO1	PO1& PO2	1.1.1	L1 L2, L3
06/05/24	10/05/24	 Applications to work done by a force and flux-Problems Statement of Green's theorem and Stoke's theorem-Problems 	CO1	PO1& PO2	1.1.1	L1 L2 L3
13/05/24 20/05/24		I-Internals Module-2: Vector Space and Linear Transformations. • Vector spaces: Definition and examples • subspace, linear span-Problems.	CO2	PO1& PO2	1.1.1	L1 L2 L3
~7/05/24	31/05/24		CO2	PO1& PO2	1.1.1	L1 L2 L3
03/06/24	4 07/06/24	 Basis and dimensionProblems Linear transformations: Definition and examples, Algebra of transformations. 	CO2	PO1& PO2	1.1.1	L1 L2 L3
10/06/2	4 14/06/24	 coordinates. Rank-Nullity theorem. Inner product spaces and orthogonality-Problems. 	CO2	PO1&PO2	1.1.1	L1 L2 L3
17/06/2						
24/06/2	24 29/06/2	4 II-Internals				

pared by: Shuba R N

nature: Suber R.N.

Designation: Assistant Professor

Approved by : Signature :

Designation: Professor & HOD

VISVESVARAYA TECHNOLOGICAL UNIVERSITY

metable Exceptional as per the VTU Act, 1994 "Manustangame" Beliefer 590018, Karnatata, India

Prof. R. E. Rangusmann ran REGESTRAR

Phone: (0831) 2498100 Pax: (0831) 2405467

IT 3 JUN 2023

REVISED CIRCULAR

CIE and SEE evaluations for 2022 scheme engineering programs

- JBOS 10.03.2023 and 171 $^{\rm H}$ EC meeting Proceeding no. 2.2.1
- dated: 23.02.2023
- 3. VTUVESM (ACA /Bos (2023 / 7350, dated 16.03.2023
- VTLV BCM (ACV) BOS (2023 / 661, dated 02.05.2023,
- 5. Dean Sir approval vide email dated: 07.06.2023
- 6. The Hon'ble Vice-Chancellor's approval Dated: 07.06.2023

The evaluation (CIE+SEE) details for the 2022 scheme of study and examinations for all undergraduate. engineering programs were notified by the circular VTU/BGNVACA/BoS/2023/7350, dated 16.03.2023, and is only valid for the first semester.

The Regulations governing the award of B.E./B. Tech degrees were finalized and approved in Resolution No. 2.2.1 of the 171st EC meeting. The same was notified vide notification VTU /BGM /ACA/ BoS/ 2023/661, dated 02.05.2023. Therefore the evaluation procedures outlined in the circular VTU/BGM/ACA/BoS/2023/7350, dated 16.03.2023, and are no longer valid. All university stakeholders are advised to adopt the CIE+SEE as specified in the Regulations governing the issuance of B.E./B.Tech., Degrees for Scheme 2022.

Please note:

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Down (SEE) is 50%. The minimum passing mark for the GIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). The student is declared as a pass in the course if he/she secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

To put it simply, availation techniques/methods are listed in the table for further understanding

ree with radite	Evaluation Type	Maximum Marks	Minimum Patring Marks	Evaluation Octavis
	Total CIII theory + practical	50	7.0	A second of the
-	CIG -IA Tests	ing in a mangagipakan dalam na Ana	g ya ki shika dhasa dhasa dhaga sanaa fa ya shika ƙ	Average of Two Internal Assessment. Tests each of 25 marts, scale down the marks scored to 15 marts.
	CIÚ - CCAS	10	angan produktion matematika kajala telek e edelak ereke za l	Any two Assessment methods as per clause 22084.2 of Republican (if assessment is project based, then one assessment method may be adopted)
	Total CIE Theory	25	10	Scale dov/n marks of tests and
04 Credit	CIT Practical	15	06	Conduction of experiments and Preparation of Laboratory tecords, etc.
IPCC	CIE Practical Tost	10	04	One test after all experiment's conduction for 50 marks
	Total CIE Practical	25	1.0	Scale down marks of Expts. record and test to 25
	SEE	50	18	SEE exam is a theory exam, conducted for 100 marks, scored marks are scaled down to 50 marks
	The minimum marks 25) in the theory cor	to be secured	In CIE to appear 10 (40% of maxis	respective modules only. Average of Two Internal Assessment
O3 and O2	The minimum marks 25) in the theory com The laboratory comp the laboratory compo	to be secured imponent and orient of the orient shall be	In CIE to appear 10 (40% of maxis IPCC shall be for the included in their	CIE only. However, in SEE, the questions from respective modules only. Average of Two Internal Assessment Tests each of 25 marks Any two Assessment methods as per clause 22084.2 of Regulations ("If it is project based, one assignment shall be
03 and 02 Credit Courses	The minimum marks 25) in the theory con The laboratory comp the laboratory compo CIE - IA Tests	to be secured mponent and onent of the onent shall be	In CIE to appear 10 (40% of maxis IPCC shall be for concluded in their 10	CE only. However, in SEE, the questions from respective modules only. Average of Two Internal Assessment Tests each of 25 marks Any two Assessment methods as per clause 22084,2 of Regulations ("If it is
Credit	The minimum marks 25) in the theory cor The laboratory compt the laboratory compt CIE - IA Tests CIE - CCAs SEE	to be secured mponent and onent of the onent shall be 25 25 50	In CIE to appear 10 (40% of maxis IPCC shall be for concluded in their 10 10 18	CLE only. However, in SEE, the questions from respective modules only. Average of Two Internal Assessment Tests each of 25 marks. Any two Assessment methods as per clause 22084.2 of Regulations ("If it is project based, one assignment shall be given) SEE exam is a theory exam, conducted for 100 marks, scored marks are scaled down to 50 marks.
Credit	The minimum marks 25) in the theory cor The laboratory compt the laboratory compt CIE - IA Tests CIE - CCAs SEE CIE+SEE Notel A few of the c	to be secured imponent and onent of the onent shall be 25 25 25 50 courses of 03 courses of 03	In CIE to appear 10 (40% of maxis IPCC shall be for 0 Included in their 10 10 18 40 credits are integra	CLE only. However, in SEE, the questions from respective modules only. Average of Two Internal Assessment Tests each of 25 marks. Any two Assessment methods as per clause 22084.2 of Regulations ("If it is project based, one assignment shall be given) SEE exam is a theory exam, conducted for 100 marks, scored marks are scaled down to 50 marks.
Credit	The minimum marks 25) in the theory cor The laboratory compt the laboratory compt CIE - IA Tests CIE - CCAs SEE	to be secured imponent and onent of the onent shall be 25 25 25 50 courses of 03 courses of 03	In CIE to appear 10 (40% of maxis IPCC shall be for concluded in their 10 10 18 18 40 credits are integrall be followed.	CLE only. However, in SEE, the questions from respective modules only. Average of Two Internal Assessment Tests each of 25 marks. Any two Assessment methods as per clause 22084.2 of Regulations ("If it is project based, one assignment shall be given) SEE exam is a theory exam, conducted for 100 marks, scored marks are scaled down to 50 marks.
Credit Courses	The minimum marks 25) In the theory cor The laboratory composite the la	to be secured imponent and onent of the onent shall be 25 25 50 50 courses of 03 edits IPCC shall be courses	In CIE to appear 10 (40% of maxis IPCC shall be for control included in their second in the second in th	CIE only. However, in SEE, the questions from respective modules only. Average of Two Internal Assessment Tests each of 25 marks. Any two Assessment methods as per dause 22084.2 of Regulations ("If it is project based, one assignment shall be given) SEE exam is a theory exam, conducted for 100 marks, scored marks are scaled down to 50 marks. Ited Course type, for such courses the method. Average Of Two Internal Assessment
Credit	The minimum marks 25) In the theory cor The laboratory composite the la	to be secured imponent and onent of the onent shall be 25 25 25 50 50 courses of 03 edits IPCC shall 25 25	In CIE to appear 10 (40% of maxis IPCC shall be for continuous included in their states in the states included in the states in	CIE only. However, in SEE, the questions from respective modules only. Average of Two Internal Assessment Tests each of 25 marks. Any two Assessment methods as per dause 22084.2 of Regulations ("If it is project based, one assignment shall be given) SEE exam is a theory exam, conducted for 100 marks, scored marks are scaled down to 50 marks. Ited Course type, for such courses the method Average Of Two Internal Assessment Tests each of 25 marks. Any two Assessment method as per

The recommended evaluations are meant to get students involved in all forms of assessment and improve their SEE performance.

All the Principals of the Engineering Colleges/Chairpersons of the University departments are hereby informed to bring the content of this Notification to the notice of all concerned.

Sd/-Registrar

R-

To,

- All the Principals of affiliated/ Constituent / Autonomous Engineering Colleges under the ambit of the VTU Belagavi
- The Chairperson and Program Coordinator, PG Centres' VTU Belagavi, Kalaburagi, Mysuru, and Bengaluru where B.E./B.Tech., programs are being offered.

Copy to

- 1. To the Hon'ble Vice-Chancellor through the secretary to VC for information
- 2. The Registrar (Evaluation) for information and needful
- The Director ITI SMU VTU Belagani for information and make arrangements to upload it on the VTU web
 portal.
- 4. The Special Officer QPDS Examination section VTU Belagavi
- 5. The Coordinator IQAC VTU Belagavi
- 6. Office Copy

Lar 12/06/23 BE

REGISTRAR

على المات الم

SIR M VISVESVARAYA INSTITUTE OF TECHNOLOGY, BENGALURU - 562157 DEPARTMENT OF MATHEMATICS

NAME OF THE FACULTY: Shuba R N

BATCH: 2023

SCHEME: 2022 BRANCH: CS/IS/IOT/AIML/BT

1. POs CORRELATION

Sl.No	VTU Course Code	Course Name	POs Correlation
1	BMATS201	Engineering Mathematics –II For CSE stream	PO1, PO2, PO5

2. COURSE OUTCOMES (COs)

Apply the concept of change of order of integration and change of variables to evaluate multiple integrals and their usage in computing the area and volume.
Understand the applications of vector calculus to refer to solenoidal and irrotational vectors and also curvilinear coordinates.
Demonstrate the idea of Linear dependence and independence of sets in the vector space and linear transformation.
Apply the knowledge of numerical methods in analyzing the discrete data and solving the physical and engineering problems
Get familiarize with modern mathematical tools namely MATICA/MATLAB/PYTHON/SCILAB.

3. CO-PO MAPPING MATRIX

									Year of	Study:	2023 - 24
PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	PO11	PO12
2	3										
2	3										-
2	3										
2	3										
3	1			3							2
	2 2 2 2	2 3 2 3 2 3 2 3	2 3 2 3 2 3 2 3 2 3 3 2 3 3 3 3 3 3 3 3	2 3 2 3 2 3 2 3 2 3 2 3 2 3 3 2 3 3 2 3 3 2 3	2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3	2 3 2 3 2 3 2 3 2 3 2 3 2 3 3 2 3 3 2 3 3 2 3	2 3 2 3 2 3 2 3 2 3	2 3 2 3 2 3 2 3	2 3 2 3 2 3 2 3 2 3	2 3 2 3 2 3 2 3 2 3	2 3 2 3 2 3 2 3 2 3 2 3 2 3 3 2 3 3 3 3

4. CO-PO MAPPING JUSTIFICATION

	Justification
CO-1	Moderately related to PO1, strongly related to PO2: Students are able to solve problems related change of order of integration and change of variables to evaluate multiple integrals and their application in finding the area and volume.
CO-2	Moderately related to PO1, strongly related to PO2: Students apply the knowledge to find solenoidal and irrotational vectors. Also they learn Cartesian, Cylindrical and Spherical systems as curvilinear coordinate system.
CO-3	Moderately related to PO1, strongly related to PO2: Students will get the idea of Linear dependence and independence of sets in the vector space and also linear transformation.
CO-4	Moderately related to PO1, strongly related to PO2: Students will learn numerical methods in analyzing the discrete data and solving the physical and engineering problems
C0-5	Strongly related to PO1, PO5 & moderately related to PO12: Students will become familiarize with modern mathematical tool namely Python and apply the mathematical knowledge to understand computer algorithms

SIR M VISVESVARAYA INSTITUTE OF TECHNOLOGY BENGALURU - 562157

DEPARTMENT OF MATHEMATICS

BATCH: 2023-24

SCHEME: 2022

SEM: II

BRANCH: ECE/EEE/ETE

1. POs CORRELATION

Sl. No	VTU Course Code	Course Name	POs Correlation
1	BMATE201	MATHEMATICS-II	PO1, PO2

2. COURSE OUTCOMES (COs)

emester:	II Year of Study: 2023-24
CO1	Understand the applications of vector calculus refer to solenoidal, irrotational vectors, line integral and surface integral.
CO2	Demonstrate the idea of Linear dependence and independence of sets in the vector space, and linear transformation
CO3	To understand the concept of Laplace transform and to solve initial value problems.
CO4	Apply the knowledge of numerical methods in analysing the discrete data and solving the physical and engineering problems.
CO5	Familiarize with modern mathematical tools namely MATHEMATICA/MATLAB/ PYTHON/ SCILAB

3. GAP ANALYSIS

1 2	1		GAP Identified	
2		CO1	NIL	Action Taken
2	2	CO2	Groups, rings, Integral domain	NIL 1.Traditional board and chalk method.
3	3	CO3	NIL	2. Interactive teaching modes
4	4	CO4	NIL	NIL NIL
5	5	CO4	NIL	NIL

4. ACTION TAKEN DISCRIPTION

Action Taken	Donat
	Description
Traditional hand	
Traditional board and chalk method	Typically for courses which are analytical, have
	1 radioillatical derivations and concentral
	developments. Problem Analysis and solveign 1
	giving analogy simplification of concept, stepwise
Interactive teaching modes	problem solving, highlighting the important tarms
modes modes	Such as group discussions, quiz rigorous aggignment
	are used to improve problem solving capability, critic
	Thinking, control design and analysing ability.

Subject Expert:

Profession Library

Dec **Signature of HOD**Sir Milyis A. Johnson Inspired of Technology

Bengaluru-532157

SIR M VISVESVARAYA INSTITUTE OF TECHNOLOGY, BENGALURU-562157 DEPARTMENT OF MATHEMATICS ASSIGNMENT - I

SEMESTER: II

BRANCH: COMMON TO ALL BRANCHES

SUBJECT: MATHEMATICS II (BMAT S/C/E/M 201)

DATE OF ANNOUNCEMENT: 17/05/2024

DATE OF SUBMISSION: 30/05/2024

SL. NO	QUESTIONS									со	RBT			
1.	Use (a)Newton – Raphson Method (b)Regula- Falsi Method to find the real root of the equation $x^3 + x^2 + 3x + 4 = 0$									CO4	L1 & L2			
2.	From the following table find the no of students who have obtained marks between (a) 40 and 45 (b) 70 and 75.											CO4	L1 & L2	
	Marks		30-40		40-50		50-60		60-70		70-80			
	No Student	of 31		-	42		51		35		31			
3.	Construct the interpolating polynomial for the data given below using Newton's divided difference formula										CO4	L1 & L2		
	X	2		4		5 6		8 10		10				
	f(x)	10		96	196		50	868		1746		1		Variation in the second
4.	Use Lagrange's interpolation formula to fit a polynomial for the given data and hence estimate y at x=2, x=5.									given data	CO4	L1 & L2		
	x 0			1		3			4		Residence of the second			
			-12				6		1		12			
5.	Evaluate $\int_0^1 \frac{x}{1+x^2} dx$ by (a) Trapezoidal Rule, (b) Simpson's $1/3^{rd}$ Rule (c)									CO4	L1 & L2			
6.	Simpson's $3/8^{th}$ rule by taking 7 ordinates and hence find $\log_e 2$. Apply Taylor's series method to find y(0.2) correct to 4 decimal places, given $\frac{dy}{dx} = -xy^2$, y(0) = 2.										CO5	L1 & L2		
7.	Use Modified Euler's Method to find y in range (0,0.4) by taking h=0.4, given $\frac{dy}{dx} + x^2 = y$, $y(0) = 1$.										L1 & L2			
8.	Solve $(y^2 - x^2)dx = (y^2 + x^2)dy$ for y at x=0.2, given that y=1 at x=0 initially, by applying RK-Method.								COS	L1 & L2				
9.	Given $\frac{dy}{dx} + \frac{y}{x} = \frac{1}{x^2}$ and the data											CO5	L1 & L2	
	X		1		1	.1		1.2			1.3			
	у		1			.996		0.986			0.0	72		
	compute	111	1) core	ect to	1 docin	aal alae						-	11	

QPSC Member

HOD

SIR M VISVESVARAYA INSTITUTE OF TECHNOLOGY

Department of Mathematics

Assignment -II

Subject: MATHEMATICS-II FOR Electrical & Electronics ENGINEERING STREAM

Subject Code BMATE201

Date of Announcement: 12/6/2024

Date of submission:21/6/2024

SL	Questions	CO'	PO'S	RB
NO	Questions	s	100	T
1	State the rank-Nullity theorem and verify the theorem for the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by $T(x, y, z) = (x + 2y - z, y + z, x + y - 2z)$	CO2	1 & 2	L1, L2
2	Define linearly independent set of vectors and linearly dependent set of vectors. Are the vectors $V_1 = (2, 5, 3)$, $V_2 = (1, 1, 1)$, and $V_3 = (4, -2, 0)$ linearly independent? Justify your answer	CO2	1 & 2	L1, L2
3	Find the dimension and basis of the subspace spanned by the vectors $(2, 4, 2)$, $(1, -1, 0)$, $(1, 2, 1)$, and $(0, 3, 1)$ in V_3 (R)	CO2	1 & 2	L1, L2
4	Find the Laplace transform of (i) e^{-3t} (2cos5t-3sin5t) (ii) $\frac{cosat-cosbt}{t}$	CO3	1 & 2	L1, L2
5	Find the Laplace transform of the triangular wave function $f(t) = \begin{cases} t & 0 < t \le a \\ 2a - t & a < t \le 2a \end{cases}$	CO3	1 & 2	L1, L2
6	Using the convolution theorem, find the inverse Laplace transform of $\frac{s}{(s^2+a^2)^2}$	CO3	1 & 2	L1, L2
7	Solve by Laplace transform method: $y'' + 4y' + 3y = e^{-t}$, given $y(0) = y'(0) = 1$	CO3	1 & 2	L1, L2
8	Verify Stoke's theorem for $\vec{F} = (x^2 + y^2)\hat{i} - 2xy\hat{j}$ taken round the rectangle bounded by the lines $x = \pm a$, $y = 0$ and $y = b$.	CO1	1 & 2	L1, L2
9	Define a solenoidal vector. Find the value of a for which $\vec{F} = (x+3y)\hat{i} + (y-2z)\hat{j} + (x+az)\hat{k}$ is solenoidal	CO1	1 & 2	L1, L2
10	If $\vec{F} = \nabla(xy^3z^2)$ find $div\vec{F}$ and $curl\vec{F}$ at the point (1, -1, 1)	CO1	1 & 2	L1, L2

Sway Verified by QPSC member

Approved by HOD

Sir M. Visvesvaraya Institute of Technology Bangalore 562 157

INTERNAL TEST PAPER

TEST NO

SEM:

COURSE /

BRANCH

: BE / ALL BRANCHES

MAX. **MARKS**

25

DURATION : 60 Mins

SUBJECT

Mathematics II

Faculty Name

USN

Instructions: Answer any one Question from each PART

BL – Bloom's Taxonomy Levels (1- Remembering, 2- Understanding, 3 – Applying, 4 – Analyzing, 5 – Evaluating, 6 - Creating) CO – Course Outcomes PO – Program Outcomes; PI – Performance Indicator

į	Q. No			Question					co	BL	РО	PI	
ī		PART A											
	1	a) Find a real root of equation $xe^x - 2 = 0$ in the interval (0,1) correct to three decimal places by Newton Raphson method								L1&L2	P13P2	2.1.3	
		b) From the following table find the number of students who have obtained a) less than 45 marks b) between 40 & 45 marks											
		Marks	30-40	40-50	50-60	60-70	70-80	6	CO4	11&L2	P1&P2	1.1.1	
~		No. of students	31	42	51	35	31						
ī			OR								-		
		a) Use Newton's Divided difference formula to fit an interpolating polynomial for the following table								L1&L2	P1&P2	2.1.3	
		x		0	1	2	5		CO4				
	2	у		2	3	12	147						
and the second s		b) Evaluate $\int_0^1 \frac{dx}{1+x}$ taking seven ordinates by applying Simpson's $\frac{3}{8}$ th rule. Hence deduce the value of $\log_2 2$							CO4	L1&L2	P1&P2	1.1.1	
_					PAR'					1	-		
	3	a) Use Taylor's series method to find y at x=0.1,0.2,0.3 considering terms upto the third degree given that $\frac{dy}{dx} = x^2 + y^2$ and y(0)=1								L1&L2	P1&P2	1.1.1	
	3	b) Use Modified Euler's method to compute y(0.1) correct to 3 decimal places, given that $\frac{dy}{dx} = x^2 + y$, y(0)=1							CO5	L1&L2	P1&P2	1.1.1	
					OI								
<u> </u>	4	a) Given $\frac{dy}{dx} = 3x + \frac{y}{2}$; y(0)=1 compute y(0.2) by taking h=0.2 using Runge-kutta method of fourth order.								i 11&1	P1&P2	1.1.1	
		b) Apply Milne's method to compute y(1.4) correct to four decimal places								-	-		
		given that $\frac{dy}{dx} = x^2 + \frac{y}{2}$ & the data $y(1)=2$, $y(1.1)=2.2156$, $y(1.2)=2.4649$, $y(1.3)=2.7514$							COS	11&1	P1&P2	1.1.1	
Ĺ		CO4: Annly the	knowlodgo	of numerical v									

CO4; Apply the knowledge of numerical methods in solving physical and engineering phenomena. CO5 :Get familiarize with modern mathematical tools namely Mathematica/MatLab/Python/Scilab

Verified by **QPSC** Member

Approved By

Sir M Visvesvaraya Institute of Technology Bengaluru 562 157

Scheme and Solution

	Scheme and Solution	
Subjec	et Title: Mathemation II Subject code: BM	
Question	Solution	Marks Allocated
No.		
1. (a)	f(0)=-2<0 f(1)=0.718370, 20=1	
	$x_1 = x_0 - \frac{f(x_0)}{f(x_0)} = 0.8679$	6 Mark
	ス2=0.8538, 入3=0.8526, ス4=0.8526	
(b)	Table Cas Ay By By	
(0)	x f(x) by by by	
	40 31 42 9 -25	
	1 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	60 184 35 -16 12	
	80 190 31	
	7 = 70 + 270 + 8(8-1) 270 + 8-(8-1) 270	C mank
	+92(92-1)(92-2) 18430. 92 = 0.5	6 maels
	= 48	
·	(b) Bet 40245 males f(45)-f(40)= =48-31=17.	

Sir M Visvesvaraya Institute of Technology Bengaluru 562 157

Scheme and Solution

Subject Title:

Subject code:

Question No.	Solution	Marks Allocated
2. 9	Table $ x f(x) f(D,D S,D,D T,DD $ $ 0 2 $	6 mask
	$f(x) = f(x_0) + (x_1-x_0) + (x_1-x_2) + $	6 made

A district of the second

Sir M Visvesvaraya Institute of Technology Bengaluru 562 157

Scheme and Solution

Subject Title:

Subject code:

					Marks
stion			Solution	1	Allocated
			0.2	11 1121	
	sub y	1= 1+,	1 - 4 -	42/3 - D	, 6 mark
	Y(0.1) =	1.1113,	7(0.2)	= 1.2507, 46.3)=1.42	b
()		· far	aula i'h	y(0) = yothf(20 40)	
(b)	Euch	12 1911	records 1/2	=1.10 - 3	
î	8	r. A e	réelm	100 - (2) - (3) - (5) - (5) - (5)	
	Woon	peu -	1 Talas 40	501157 - (AF 12) - B	7 mades
	9,	= 30 %	(2)	11767 . 4,51.105	
	4c1) :	= 1.1055	41 -	1.1057,	1
+ (a)			din - ailb	5 , K3 = 0.10000	
	K1 =	0117		K= 0.1672208-4	6 mark
	K4 =	8 CE, 8	325 /	K= 0.1672208-1	ψs
	4.=	1.1678	208 a	F 1012	
(b)	Table	ч	U1-22+4/	1.4(8)= 40+77 [24]-27	
	1 2	<u> </u>	9	= 3.07 02 (= 3	
	1.1		2 2	By corrector to mule	7 marks
		2 2156	2.3178	74 = 72+ \$ (47 +449+4)	5
	1.2	2.4649	ब स्वाचम्	-4 = 75, 3 (dr , 4, 34)	
	1.3	2.7514	3.0657	- 3.0794	
iv.	1.4	44		y(2) = 3.0794	
			→ <u>(1)</u>	→ (4)	

USN

Sir M. Visvesvaraya Institute of Technology Bangalore 562 157

INTERNAL TEST PAPER

TEST NO

2

SEM:

COURSE /

BRANCH

BE / CS/IS/ME/CV/BT

MAX. MARKS

25

DURATION: 60 Mins

SUBJECT

Mathematics II

2023

Faculty Name

: UMAS

Instructions: Answer any one Question from each PART

BL - Bloom's Taxonomy Levels (1- Remembering, 2- Understanding, 3 - Applying, 4 - Analyzing, 5 - Evaluating, 6 - Creating) CO – Course Outcomes PO – Program Outcomes; PI – Performance Indicator

Q. No	Questions	Marks	со	BL	PO	PI
	PART A					
	a) Evaluate $\iint (x^2 + y^2) dx dy$ over the region in the positive quadrant for which $x + y \le 1$.	6	CO1	L1&L2	P1&P2	2.1.3
1	b) Evaluate $\int_0^{4a} \int_{x^2/4a}^{2\sqrt{ax}} dy dx$ by changing the order of integration .	CO1	L1&L2	P1&P2	1.1.1	
_~	OR					
	a) Find by double integration the area enclosed by the curve $r = a(1 + \cos \theta)$ between $\theta = 0$ and $\theta = \pi$.	6	CO1	. L1&L2	P1&P2	2.1.3
2	b) Prove that $\beta(m,n) = \frac{\tau(m)\tau(n)}{\tau(m+n)}$	6	co	1 11&12	2 P1&P2	1.1.1
	PART B					
	a) Find directional derivative of $\frac{xz}{x^2+y^2}$ at (1,-1,1) in the direction of vector i-2j+k	6	co	2 L1&L	2 P1&P2	1.1.1
3	b) Find div \overrightarrow{F} and curl \overrightarrow{F} where $\overrightarrow{F} = \nabla(x^3 + y^3 + z^3 - 3xyz)$	7	со	2 L1&I	.2 P1&P	2 1.1.1
	OR					
	a) Find constants a,b,c such that vector field (sin y + az) i + (bx cos y + z) j + (x + cy) k is irrotational also find $\overrightarrow{F} = \nabla \emptyset$	6	cc)2 L1&	L2 P1&F	2 1.1.1
	b) $\overrightarrow{F} = x^2 y \ i + yz^2 j + zx^2 k \text{ find curl } (\text{curl } (\overrightarrow{F}))$	7	cc	D2 L1&	L2 P1&	P2 1.1.1
- 6	CO1: Apply the knowledge of multiple integrals to compute area and volume.					

CO1: Apply the knowledge of multiple integrals to compute area and volume.

CO2: Understand the applications of vector calculus refer to solenoidal, irrotational vectors, line integral and surface integral.

CO3: Demonstrate the idea of Linear dependence and independence of sets in the vector space and linear transformation

CO4: Apply the knowledge of numerical methods in solving physical and engineering phenomena.

CO5: Get familiarize with modern mathematical tools namely Mathematica/MatLab/Python/Scilab

Verified by

Approved By

Sir M Visvesvaraya Institute of Technology Bengaluru 562 157

Scheme and Solution

Subject Title: Mathematics -II for EFE Strawsubject code: BMATE 201

Question	Solution	Marks
No.	Part-d	Allocated
0 @		(m)
	D.D of ϕ $= \nabla \phi. \hat{\alpha}$ $\hat{\alpha} = \frac{\vec{\alpha}}{ \vec{\alpha} }$	
	Given, d= 21/8+4282	
	VP = St 1+ St j+ St r	(2M)
	$= (2xyz + 4z^2) \hat{J} + (x^2z) \hat{J} + (x^2y+8xz) \hat{I}$	(2m)
	PQ = 8î-Î-10k	
•	$3i-\hat{j}-2\hat{k}$	(m)
	$\hat{a} = \frac{\vec{\alpha}}{ \vec{\alpha}' } = \frac{2\vec{i} - \hat{j} - 2\hat{k}}{3} : \nabla \phi. \hat{\alpha} = \frac{37}{3}$	
(1) (b)	VX P = 3 3 3 37 = 8 = 8 = 10 = 4	(2 M)
	$(axy-3)(a-1)x^{2}(1-a)x^{2}$	

Sir M Visvesvaraya Institute of Technology Bengaluru 562 157

Scheme and Solution

Subject Title: Mathematici - I for EEE Stoream Subject code: BMATE201

Question No.	Solution				
(1) (b)	Given, $\nabla \rho = \vec{P}$				
	30 1+39 1+39 2=(4xy-3)1+2xj- 3x322				
	$\frac{\partial f}{\partial x} = 4xy - \xi^{3} \left \frac{\partial f}{\partial y} = 2x^{2} \left \frac{\partial f}{\partial y} = -3x\xi^{2} \right \\ f = 2x^{2}y - x\xi^{3} + \left f = 2x^{2}y + \left f = -x\xi^{3} + f(x) \right \\ f_{1}(y,\xi) \left f_{2}(x,\xi) \right \\ f_{3}(x,\xi) \left f_{3}(x,\xi) \right \\ \frac{\partial f}{\partial y} = 2x^{2}y + \left f_{3}(x,\xi) \right \\ \frac{\partial f}{\partial y} = 2x\xi^{2} + \left f_{3}(x,\xi) \right \\ \frac{\partial f}{\partial y} = 2x\xi^{2} + \left f_{3}(x,\xi) \right \\ \frac{\partial f}{\partial y} = 2x\xi^{2} + \left f_{3}(x,\xi) \right \\ \frac{\partial f}{\partial y} = 2x\xi^{2} + \left f_{3}(x,\xi) \right \\ \frac{\partial f}{\partial y} = 2x\xi^{2} + \left f_{3}(x,\xi) \right \\ \frac{\partial f}{\partial y} = 2x\xi^{2} + \left f_{3}(x,\xi) \right \\ \frac{\partial f}{\partial y} = 2x\xi^{2} + \left f_{3}(x,\xi) \right \\ \frac{\partial f}{\partial y} = 2x\xi^{2} + \left f_{3}(x,\xi) \right \\ \frac{\partial f}{\partial y} = 2x\xi^{2} + \left f_{3}(x,\xi) \right \\ \frac{\partial f}{\partial y} = 2x\xi^{2} + \left f_{3}(x,\xi) \right \\ \frac{\partial f}{\partial y} = 2x\xi^{2} + \left f_{3}(x,\xi) \right \\ \frac{\partial f}{\partial y} = 2x\xi^{2} + \left f_{3}(x,\xi) \right \\ \frac{\partial f}{\partial y} = 2x\xi^{2} + \left f_{3}(x,\xi) \right \\ \frac{\partial f}{\partial y} = 2x\xi^{2} + \left f_{3}(x,\xi) \right \\ \frac{\partial f}{\partial y} = 2x\xi^{2} + \left f_{3}(x,\xi) \right \\ \frac{\partial f}{\partial y} = 2x\xi^{2} + \left f_{3}(x,\xi) \right \\ \frac{\partial f}{\partial y} = 2x\xi^{2} + \left f_{3}(x,\xi) \right \\ \frac{\partial f}{\partial y} = 2x\xi^{2} + \left f_{3}(x,\xi) \right \\ \frac{\partial f}{\partial y} = 2x\xi^{2} + \left f_{3}(x,\xi) \right \\ \frac{\partial f}{\partial y} = 2x\xi^{2} + \left f_{3}(x,\xi) \right \\ \frac{\partial f}{\partial y} = 2x\xi^{2} + \left f_{3}(x,\xi) \right \\ \frac{\partial f}{\partial y} = 2x\xi^{2} + \left f_{3}(x,\xi) \right \\ \frac{\partial f}{\partial y} = 2x\xi^{2} + \left f_{3}(x,\xi) \right \\ \frac{\partial f}{\partial y} = 2x\xi^{2} + \left f_{3}(x,\xi) \right \\ \frac{\partial f}{\partial y} = 2x\xi^{2} + \left f_{3}(x,\xi) \right \\ \frac{\partial f}{\partial y} = 2x\xi^{2} + \left f_{3}(x,\xi) \right \\ \frac{\partial f}{\partial y} = 2x\xi^{2} + \left f_{3}(x,\xi) \right \\ \frac{\partial f}{\partial y} = 2x\xi^{2} + \left f_{3}(x,\xi) \right \\ \frac{\partial f}{\partial y} = 2x\xi^{2} + \left f_{3}(x,\xi) \right \\ \frac{\partial f}{\partial y} = 2x\xi^{2} + \left f_{3}(x,\xi) \right \\ \frac{\partial f}{\partial y} = 2x\xi^{2} + \left f_{3}(x,\xi) \right \\ \frac{\partial f}{\partial y} = 2x\xi^{2} + \left f_{3}(x,\xi) \right \\ \frac{\partial f}{\partial y} = 2x\xi^{2} + \left f_{3}(x,\xi) \right \\ \frac{\partial f}{\partial y} = 2x\xi^{2} + \left f_{3}(x,\xi) \right \\ \frac{\partial f}{\partial y} = 2x\xi^{2} + \left f_{3}(x,\xi) \right \\ \frac{\partial f}{\partial y} = 2x\xi^{2} + \left f_{3}(x,\xi) \right \\ \frac{\partial f}{\partial y} = 2x\xi^{2} + \left f_{3}(x,\xi) \right \\ \frac{\partial f}{\partial y} = 2x\xi^{2} + \left f_{3}(x,\xi) \right \\ \frac{\partial f}{\partial y} = 2x\xi^{2} + \left f_{3}(x,\xi) \right \\ \frac{\partial f}{\partial y} = 2x\xi^{2} + \left f_{3}(x,\xi) \right \\ \frac{\partial f}{\partial y} = 2x\xi^{2} + \left f_{3}(x,\xi) \right \\ \frac{\partial f}{\partial y} = 2x\xi^{2} + \left f_{$	(4m)			
	$f_{1}(y, 3) = 0; f_{2}(x, 3) = -x_{3}^{3}; f_{3}(x, y) = 3x_{3}^{2}$ $\begin{cases} 0 = 2x^{2}y - x_{3}^{2} \end{cases}$				
60 -					
(X)(Q)	V. A= Da, + Da, + Da, Dx + Dy + 28	(Tm)			

Scheme and Solution
Subject Title: Mathematics - II for EEE Stream Subject code: BM ATE 20)

Question No.	Solution	Marks Allocated
(2)	$P.\vec{A} = 3^{3} - 3x^{2}z + 8yz^{3}; (P.\vec{A}) = -9$ $Px\vec{A} = 2(3^{4} + x^{2}y) \hat{J} + 3xz^{2} \hat{J} - 4xyz\hat{L}$ $Px\vec{A} = 3j + 4\hat{L}$ $P.(4x\vec{A}) = 0$	1 2 2 X
B	$M = xy + y^2 + N = x^2$ $DM = x + 2y + DN = 2x$	1m
	$(0,0) + (1,1) + (2x - x - 2y) dxdy = -1$ $I = \int (2x - x - 2y) dxdy = -1$ $x = 0 = x^{2}$ $0 = x^{2}$	2m

Subject Title: Mathematica - 1 As FFE Stream subject code: OMATESO

	the: Mathematica - I for Ett Stram subject code: Bl	natego
Question	Solution	Marks
No.		Allocated
30	(i) Lf Gosbt - 6084H = \(\begin{array}{c} \beta \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	de (m)
	$=\frac{1}{2}\left\{\begin{array}{c} \left(\frac{\partial R}{\partial R} - \frac{\partial R}{\partial R}\right) ds \\ \left(\frac{\partial^2 R}{\partial R^2 + 36} - \frac{\partial^2 R}{\partial R^2 + 16}\right) ds \\ \end{array}\right\}$	(Im)
	$= \frac{1}{2} \int \log(5+36) - \log(5+16) \Big _{S=S}$	(IM)
	$= \frac{1}{2!} \log \left(\frac{1^2 + 36}{1^2 + 16} \right) $ $= \frac{1}{2!} \log \left(\frac{1^2 + 36}{1^2 + 16} \right) $ $= \frac{1}{2!} \log \left(\frac{1^2 + 36}{1^2 + 16} \right) $	(3m)
	$= \frac{1}{2} \lim_{\lambda \to \infty} \log \left(\frac{\lambda^2 + 3b}{\lambda^2 + 16} \right) - \log \left(\frac{\lambda^2 + 3b}{\lambda^2 + 16} \right)$ $= -\frac{1}{2} \log \left(\frac{\lambda^2 + 3b}{\lambda^2 + 16} \right) = \log \left(\frac{\lambda^2 + 16}{\lambda^2 + 3b} \right)$	

PG NO: BY

Scheme and Solution

Subject Title: Mathematice - I for EEE stoward Subject code: BMATERO

Question	Question Solution			
No.		Allocated		
30	(it) Cost(+ sin4t) dt = Literings)	(IM)		
	4+ sin 4+ 1= (-1) dfffin 4+) }	(fm)		
	$= (-1) \frac{d}{dt} \left(\frac{4}{2^2 + 16} \right) = \left(\frac{82}{3^2 + 16} \right)^2$	Im		
	(= 2t (tsin4t) dt = 16 = 25			
36	Lif(t) $y = \frac{1}{-\overline{\epsilon}} x a$ $\int_{\overline{\epsilon}}^{q} x f(t) dt$ lucu, $T = a$	(IM)		
	hou, T=Q			

22 TA

$$\begin{aligned} |I(f(1))| &= \frac{1}{1-e^{\alpha x}} \int_{0}^{\infty} \frac{1}{e^{xx}} E dt + \int_{0}^{\infty} \frac{e^{xx}}{e^{x}} (-E) dt \\ &= \frac{E}{1-e^{\alpha x}} \int_{0}^{\infty} \left(\frac{e^{xx}}{e^{x}} \right)^{\alpha/2} + \left(\frac{e^{xx}}{e^{x}} \right)^{\alpha} dx \\ &= \frac{E(1-\partial \frac{\pi}{2})^{2} + e^{\pi x}}{(1-e^{\pi x})^{2}} = \frac{E(1-e^{\pi x})^{2}}{8(1+e^{\pi x})^{2}} \\ &= \frac{E(1-\partial \frac{\pi}{2})^{2} + e^{\pi x}}{8(1+e^{\pi x})^{2}} = \frac{E(1-e^{\pi x})^{2}}{8(1+e^{\pi x})^{2}} \\ &= \frac{E(1-\partial \frac{\pi}{2})^{2} + e^{\pi x}}{8(1+e^{\pi x})^{2}} = \frac{E(1-e^{\pi x})^{2}}{8(1+e^{\pi x})^{2}} \\ &= \frac{E(1-\partial \frac{\pi}{2})^{2} + e^{\pi x}}{8(1+e^{\pi x})^{2}} = \frac{E(1-e^{\pi x})^{2}}{8(1+e^{\pi x})^{2}} \\ &= \frac{E(1-\partial \frac{\pi}{2})^{2} + e^{\pi x}}{8(1+e^{\pi x})^{2}} = \frac{E(1-e^{\pi x})^{2}}{8(1+e^{\pi x})^{2}} \\ &= \frac{E(1-\partial \frac{\pi}{2})^{2}}{8(1+e^{\pi x})^{2}} + \frac{E(1-e^{\pi x})^{2}}{8(1+e^{\pi x})^{2}} \\ &= \frac{E(1-\partial \frac{\pi}{2})^{2}}{8(1+e^{\pi x})^{2}} + \frac{E(1-e^{\pi x})^{2}}{8(1+e^{\pi x})^{2}} \\ &= \frac{E(1-\partial \frac{\pi}{2})^{2}}{8(1+e^{\pi x})^{2}} + \frac{E(1-e^{\pi x})^{2}}{8(1+e^{\pi x})^{2}} \\ &= \frac{E(1-\partial \frac{\pi}{2})^{2}}{8(1+e^{\pi x})^{2}} + \frac{E(1-e^{\pi x})^{2}}{8(1+e^{\pi x})^{2}} \\ &= \frac{E(1-\partial \frac{\pi}{2})^{2}}{8(1+e^{\pi x})^{2}} + \frac{E(1-e^{\pi x})^{2}}{8(1+e^{\pi x})^{2}} \\ &= \frac{E(1-\partial \frac{\pi}{2})^{2}}{8(1+e^{\pi x})^{2}} + \frac{E(1-e^{\pi x})^{2}}{8(1+e^{\pi x})^{2}} \\ &= \frac{E(1-\partial \frac{\pi}{2})^{2}}{8(1+e^{\pi x})^{2}} + \frac{E(1-e^{\pi x})^{2}}{8(1+e^{\pi x})^{2}} \\ &= \frac{E(1-\partial \frac{\pi}{2})^{2}}{8(1+e^{\pi x})^{2}} + \frac{E(1-e^{\pi x})^{2}}{8(1+e^{\pi x})^{2}} \\ &= \frac{E(1-\partial \frac{\pi}{2})^{2}}{8(1+e^{\pi x})^{2}} + \frac{E(1-e^{\pi x})^{2}}{8(1+e^{\pi x})^{2}} \\ &= \frac{E(1-\partial \frac{\pi}{2})^{2}}{8(1+e^{\pi x})^{2}} + \frac{E(1-e^{\pi x})^{2}}{8(1+e^{\pi x})^{2}} \\ &= \frac{E(1-\partial \frac{\pi}{2})^{2}}{8(1+e^{\pi x})^{2}} + \frac{E(1-e^{\pi x})^{2}}{8(1+e^{\pi x})^{2}} \\ &= \frac{E(1-\partial \frac{\pi}{2})^{2}}{8(1+e^{\pi x})^{2}} + \frac{E(1-e^{\pi x})^{2}}{8(1+e^{\pi x})^{2}} \\ &= \frac{E(1-\partial \frac{\pi}{2})^{2}}{8(1+e^{\pi x})^{2}} + \frac{E(1-e^{\pi x})^{2}}{8(1+e^{\pi x})^{2}} \\ &= \frac{E(1-\partial \frac{\pi}{2})^{2}}{8(1+e^{\pi x})^{2}} + \frac{E(1-e^{\pi x})^{2}}{8(1+e^{\pi x})^{2}} + \frac{E(1-e^{\pi x})^{2}}{8(1+e^{\pi x})^{2}} \\ &= \frac{E(1-\partial \frac{\pi}{2})^{2}}{8(1+e^{\pi x})^{2}} + \frac{E(1-e^{\pi x})^{2}}{8(1+e^{\pi x})^{2}} + \frac{E(1-e^{\pi x})^{2}}{8(1+e^{\pi x})^{2}} \\ &= \frac{E(1-\partial \frac{\pi}{2})^{2}}{$$

nc 010:00(06)

(4) (1)
$$\frac{1}{2} \left(\frac{(x+a)^3}{3^6} \right) = \frac{2}{3^6} \left(\frac{x^3}{3^6} + \frac{10x^4}{3^6} \right) + \frac{10}{3^6} \left(\frac{1}{x^4} \right) + \frac{10}{3^6} \left(\frac{1}{x^5} \right) + \frac{10}{3^6} \left(\frac{1}{x^4} \right) + \frac{10}{3^6} \left(\frac{1}{x^5} \right) + \frac{10}{3^6} \left(\frac{1}{x^4} \right) + \frac{10}{3^6} \left(\frac{1}{x^5} \right) + \frac{10}{3^6} \left(\frac$$

>> (y/t)= == 23t +4) Pg no.

SIR M. VISVESVARAYA INSTITUTE OF TECHNOLOGY BANGALORE -562157

FAST LEARNERS

Department: Mathematics

Date:

Subject: Mothematics -11 for EE Stream

Subject Code: BMATEROI

Semester:

0	USN	NAME OF THE STUDENT	SIGNATURE
1	I MV23tEODS	Ambika Shatagar	ol mlike
	012	Baireddy Kalyani	Bairreedly Kolyani
	013	Bharat M Harasi	All o
			Moss
			Told node
7			Alo T
8			Culator Del
9			Wander Arkathus
	8	012 3	012 Baireddy Kalyani D13 Bharat M Hanasi D23 Gayatri D29 Lathmi H Goulda B D32 Maanya S O36 Mustafa Bohra B D38 Nandini Abaar

Topics covered:

1 Solved Model D.P 2 poremions years Depositions of vectoralisms.

Demonstrated real moral applications of vectoralisms,

L numerical methods

(3) Applied LT to solve purblems related to Electrical & Electronics Stream

Faculty In-charge: SHUBA - R-N

Designation: Assistant Powerson

Bube-R.N. Signature:

SIR M. VISVESVARAYA INSTITUTE OF TECHNOLOGY **BANGALORE -562157**

Remedial classes for slow learners

Department: Mathematics

Date:

Subject: Mathematics-II for EEE Stream

Subject Code: BMATE201

Semester: II

SL.N	USN	N. M. O. T.	22222
0	USN	NAME OF THE STUDENT	SIGNATURE
1	1MV23EE001	ACHAL CHOURASIYA	Achal
2	1MV23EE008	ARYA M	Angah
3	1MV23EE009	ARYA PRASAD S	Ayalora
4	1MV23EE010	ARYAN ANILRAO DESALE	AAniRoo
5	1MV23EE020	DILEEP L	Dileepu
6	1MV23EE022	G K SPOORTHI	GIKSPOOR
7	1MV23EE024	GIRISH T P	G.J.
8	1MV23EE025	HEMANTH K D	Kennt.
9	1MV23EE026	JEEVAN	Genan.
10	1MV23EE030	LAVANYA R	Samuel
11	1MV23EE033	MAHAMMAD ANEEF M	Melan
12	1MV23EE035	MAYANK KUMAR	hazop.
13	1MV23EE047	NITISH KUMAR	Numar

Topics covered:

- 1. Numerical methods-I
- 2. Numerical methods-II
- 3. Vector Calculus
- 4. Vector Spaces

Faculty In-charge: SHUBA R.N

Designation: ASSISTANT POWERSON

Signature: Buba R.N

Bengaluru 562 157
Department of Mathematics
MATHEMATICS-II Question bank (BMATE201)

Mathematics-II Question bank for Electrical Stream (BMATE201)

Compiled by,

Malashri S

Asst.Professor Sir.M.Visvesvaraya Institute of Technology.

Harish K C

Asst.Professor Sir.M.Visvesvaraya Institute of Technology.

Latha Y L

Asst.Professor Sir.M.Visvesvaraya Institute of Technology.

Janani P

Asst.Professor Sir.M.Visvesvaraya Institute of Technology.

Chetana M B

Asst.Professor Sir.M.Visvesvaraya Institute of Technology

Dr.Rudresha C

Asst.Professor Sir.M.Visvesvaraya Institute of Technology

Vasudha D K

Asst.Professor Sir.M.Visvesvaraya Institute of Technology

Niveditha C N

Asst.Professor Sir.M.Visvesvaraya Institute of Technology

Bengaluru 562 157

Department of Mathematics
MATHEMATICS-II Question bank (BMATE201)

Module 1

VECTOR CALCULUS

- 1. Find the directional derivative of $\phi=x^2yz+4xz^2$ at (1,2,-1) along 2i-j-2k.
- 2. Find divergence \vec{F} and curl \vec{F} if $\vec{F} = \text{grad}(x^3 + y^3 + z^3 3xyz)$
- 3. Find the angle between surfaces $x^2+y^2+z^2=9$ and $z=x^2+y^2-3$ at point (2,-1,2)
- 4. Show that the vector field $\vec{F} = \frac{x\hat{\imath} + y\hat{\jmath}}{x^2 + y^2}$ is both solenoidal & irrotational.
- 5. Find the constants a and b such that $\vec{F} = (axy + z^3)\hat{\imath} + (3x^3 z)\hat{\jmath} + (bxz^2 y)\hat{k}$ is irrotational. Also find a scalar potential $\vec{F} = \nabla \emptyset$.
- 6. If $\vec{F} = (x + y + 1)\vec{i} + \vec{j} (x + y)k$ show that $\vec{F} \cdot curl\vec{F} = 0$.
- 7. If $\vec{F} = (x + y + az)\hat{\imath} + (bx + 2y z)\hat{\jmath} + (x + cy + 2z)\hat{k}$ find a,b,c such that \vec{F} is irrotational. Hence find the scalar potential \emptyset such that $\vec{F} = \nabla \emptyset$.
- 8. If $\vec{f} = x^2\vec{i} + y^2\vec{j} + z^2\vec{k}$ and $\vec{g} = yz\vec{i} + zx\vec{j} + xy\vec{k}$ then verify whether $\vec{f} \times \vec{g}$ is solenoidal or not.
- 9. Show that $\vec{F} = (6xy + z^3)i + (3x^2 z)j + (3xz^2 y)k$ is irrational, find φ such that $\vec{F} = \nabla \varphi$.
- 10. If $\vec{V} = 3xy^2z^2\vec{i} + y^3z^2\vec{j} 2y^2z^3\vec{k}$ and $\vec{F} = (x^2 yz)i + (y^2 zx)j + (z^2 xy)k$, then prove that \vec{V} is solenoidal and F is irrotational.

VECTOR INTEGRATION

- 1. If $\vec{F} = (3x^2 + 6y)\hat{\imath} 14yz\hat{\jmath} + 20xz^2\hat{k}$, evaluate $\int_C \vec{F} \cdot d\vec{r}$ from (0, 0, 0) to (1, 1, 1) along the curve given by $x = t, y = t^2, z = t^3$
- 2. If $\vec{F} = xy \hat{\imath} + yz \hat{\jmath} + zx \hat{k}$ evaluate $\int_C \vec{F} \cdot d\vec{r}$ where C is the curve represented by $x = t, y = t^2, z = t^3, -1 \le t \le 1$.
- 3. Find the total work done in moving a particle in the force field $\vec{F} = 3xy\hat{\imath} 5z\hat{\jmath} + 10x\hat{k}$ along the curve $x = t^2 + 1$, $y = 2t^2$, $z = t^3$ from t = 1 to t = 2

Bengaluru 562 157

Department of Mathematics MATHEMATICS-II Question bank (BMATE201)

MODULE 2

VECTOR SPACES AND LINEAR TRANSFORMATIONS

- 1. Prove that the subset $W = \{(x,y,z) \mid x-3y+4z=0\}$ of the vector space R^3 is a subspace of R^3 .
- 2. Determine whether the matrix $\begin{bmatrix} -1 & 7 \\ 8 & -1 \end{bmatrix}$ is a linear combination of $\begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$, $\begin{bmatrix} 2 & -3 \\ 0 & 2 \end{bmatrix}$ and $\begin{bmatrix} 0 & 1 \\ 2 & 0 \end{bmatrix}$ in the vector space M of 2×2 matrices.
- 3. Find the matrix of the linear transformation $T: V_2(R) \to V_3(R)$ such that T(-1,1) = (-1,0,2) and T(2,1) = (1,2,1).
- 4. Show that the set $S = \{(1,2,4), (1,0,0), (0,1,0), (0,0,1)\}$ is linearly dependent.
- 5. Let P_n be the vector space of real polynomial functions of degree $\leq n$, show that the transformation $T: P_2 \to P_1$ defined by $T(ax^2 + bx + c) = (a + b)x + c$ is linear.
- 6. Verify Rank- Nullity theorem for the linear transformation $T: V_3(R) \to V_2(R)$ defined by T(x, y, z) = (y-x, y-z).
- 7. Find the basis and dimension of the subspace spanned by the vectors $\{(2,4,2), (1,-1,0), (1,2,1), (0,3,1)\}$ in $V_3(R)$.
- 8. Find the kernel and the range of the linear operator T(x,y,z) = (x+y,z) of R^3 to R^2 .
- 9. Let V= R³ be a vector space and consider the subset W of V consisting of vectors of the form (a, a², b), where the second component is the square of the first. Is W a subspace of V?
- 10. Let $f(x)=2x^2-5$ and g(x)=x+1. Show that the function $h(x)=4x^2+3x-7$ lies in the subspace span $\{f,g\}$ of P_2 .
- 11. Prove that the transformation $T: V_2(R) \to V_2(R)$ defined by T(x, y) = (3x, x+y) is linear. Find the images of the vectors (1,3) and (-1,2) under this transformation.
- 12. Find the linear transformation $T: V_2(R) \to V_2(R)$ such that T(1,2) = (3,0) and T(2,1) = (1,2).
- 13. Find the linear transformation $T: V_2(R) \to V_3(R)$ such that T(-1,1) = (-1,0,2) and T(2,1) = (1,2,1).

Bengaluru 562 157

Department of Mathematics

MATHEMATICS-II Question bank (BMATE201)

MODULE -3 LAPLACE TRANSFORMS AND INVERSE LAPLACE TRANSFORMS

1. Find the Laplace Transform of Square wave function of period 2a defined by

$$f(t) = \begin{cases} K, & 0 < t < a \\ -K, & a < t < 2a \text{ S.T. } L\{f(t)\} = \frac{K}{S} \tanh\left(\frac{as}{2}\right) \end{cases}$$

2. Find the Laplace Transform of (i) $\left(\frac{4t+5}{e^{2t}}\right)^2$ (ii) $\left(\frac{\sin 2t}{\sqrt{t}}\right)^2$ (iii) tcosat

3. Express
$$f(t) = \begin{cases} 1 & \text{if } 0 < t \le 1 \\ t & \text{if } 1 < t \le 2 \text{ in terms of Unit Step function and } t^2 & \text{if } t > 2 \end{cases}$$

hence find $L\{f(t)\}$

4.Find the Laplace Transform of $\frac{e^{-t} \sin t}{t}$ and hence deduce that $\int_{0}^{\infty} \frac{e^{-t} \sin t}{t} dt = \frac{\pi}{4}$

5. Express f(t) in terms of Unit Step function and hence find the L.T given that

$$f(t) = \begin{cases} t^2, & 0 < t < 2 \\ 4t, & 2 < t < 4 \\ 8, & t > 4 \end{cases}$$

6.Find the Laplace Transform of i) $2^{t} + \frac{Cos 2t - Cos 3t}{t} + t \sin t$

7. Find
$$L^{-1}\left\{\log\frac{s+1}{s-1}\right\}$$

8. Find
$$L^{-1}\left\{\tan^{-1}\left(\frac{2}{s^2}\right)\right\}$$

Bengaluru 562 157

Department of Mathematics MATHEMATICS-II Question bank (BMATE201)

9. Find $L^{-1}\left\{\frac{1}{(s+1)^2(s+2)}\right\}$ using Convolution Theorem

10. Find
$$L^{-1}\left\{\frac{s}{(s^2+1)(s^2+4)}\right\}$$
 using Convolution Theorem

11. Find
$$L^{-1}\left\{\frac{5s+3}{(s-1)(s^2+2s+5)}\right\}$$

12.Find
$$L^{-1}\left\{\frac{2s^2-6s+5}{s^3-6s^2+11s-6}\right\}$$

13. Solve y'' + 4y' + 4y = e' with y(0) = 0 = y'(0) using Laplace Transform

14. Solve
$$y''' + 2y'' - y' - 2y = 0$$
 with $y(0) = 0 = y'(0)$, $y''(0) = 6$ using LT

15. Solve
$$y'' + 6y' + 9y = 12t^2e^{-3t}$$
 with $y(0) = 0 = y'(0)$ using LT

Bengaluru 562 157

Department of Mathematics
MATHEMATICS-II Question bank (BMATE201)

Module 4

Numerical Methods – I

<u>Type 1: Finding root by Regula falsi method (correct to 4 decimal places) – Practice 2 – 4 more problems</u>

$$a.xe^x = 2$$

$$\mathbf{b.} x \log_{10} x = 1.2$$

$$\mathbf{c.} \ xe^x = \cos x$$

Type 2: Finding root by Newton Raphson method (correct to 4 decimal places) - Practice 2 - 4 more problems

$$\mathbf{a}.\tan x - x = 0 \ (near \ x = 4.5)$$

b.
$$xe^x = 2$$

$$\mathbf{c.}x\sin x + \cos x = 0$$

$$\mathbf{d.}3x - 1 = \cos x$$

<u>Type 3: Newton's forward and backward interpolation – Practice more problems</u>

a. The population of a town given by the table

Year	1951	1961	1971	1981	1991
Population in	19.96	39.65	58.81	77.21	94.61
thousands					

Using Newton forward and backward interpolation formula, calculate the increase in population from the year 1955 to 1985

b. From the following table estimate the number of students who obtained marks between 40 and 45:

Marks	30-40	40-50	50-60	60-70	70-80
No. of	31	42	51	35	31
students					

c. Given $\sin 45^{\circ} = 0.7071$, $\sin 50^{\circ} = 0.7660$, $\sin 55^{\circ} = 0.8192$, $\sin 60^{\circ} = 0.8660$, find $\sin 57^{\circ}$ using an appropriate interpolation formula.

Bengaluru 562 157

Department of Mathematics MATHEMATICS-II Question bank (BMATE201)

d. Using suitable interpolation formula find y(82) and y(98) for the following data:

X	80	85	90	95	100
У	5026	5674	6362	7088	7854

Type 4: Newton's divided difference interpolation - Practice more problems

a. Construct the interpolation polynomial for the data given below using Newton's divided difference formula:

X	2	4	5	6	8	10
у	10	96	196	350	868	1746

b. Fit interpolating polynomial for f(x) using Newton's divided difference formula, given

X	0	1	4	8	10
у	-5	-14	-125	-21	355

Hence evaluate f(2)

c. Using Newton's divided difference formula, evaluate f(8) and f(15) given:

X	4	5	7	10	. 11	13
у	48	100	294	900	1210	2028

Type 5: Lagrange's interpolation - Practice more problems

a. Use Lagrange's interpolation formula to find the interpolating polynomial that approximate the function described by the following table. Hence find f(4)

х	0	1	2	5
y	2	3	12	147

Bengaluru 562 157

Department of Mathematics

MATHEMATICS-II Question bank (BMATE201)

Module 5 Numerical methods-2

- 1. Use Taylor's series method to find y at x=0.1, 0.2 considering terms up to third degree given $\frac{dy}{dx} = x^2 + y^2$ and y (0) = 1.
- 2. Use Taylor's series method to find y at x=1.1, 1.2 considering terms up to third degree given $\frac{dy}{dx} = x + y$ and y (1) =0.
- 3. Find y at x=0.1 correct to 4 decimal places given $\frac{dy}{dx} = x y^2$; y (0) =1 applying Taylor's series method up to fourth degree terms.
- 4. Use Taylor's series method to find y at x=0.1 and 0.2 to five placed of decimals given $\frac{dy}{dx} = x^2y - 1$, y (0) =1.
- 5. Employ Taylor's series method to obtain approximate value of y at x = 0.2 for the differential equation $\frac{dy}{dx} = 2y + 3e^x$; y (0) = 0 compare numerical solution obtained with exact solutions.
- 6. Use Euler's method solve $\frac{dy}{dx} = x^2 + y^2$ and y (0) =1, for x=0.1(0.2)1.0
- 7. Given $\frac{dy}{dx} = \frac{y-x}{y+x}$, with y (0) =1. Find y approximately for x=0.1 by Euler's method in five
- 8. Using Euler's modified method, find y (0.2) given $\frac{dy}{dx} = x y^2$; y (0) = 1, taking h=0.1
- 9. Using modified Euler's method to compute y (0.1), given $\frac{dy}{dx} = x^2 + y$, y (0) =1 by taking h=0.05 considering accuracy unto two approximations in each step.
- 10. Using Euler's modified method, $\frac{dy}{dx} = \log(x + y)$, y(0)=1, find y for x=0.2 taking h=0.1
- 11. Using modified Euler's method to compute y(0.2), given $\frac{dy}{dx} = x + y$, y(0)=1 by taking
- 12. Solve $\frac{dy}{dx} = xy$; y (1) =2, find approximate solution at $x_1 = 1.2$ using Runge-Kutta 12 method.

1 1/2/1/2///

Bengaluru 562 157

Department of Mathematics MATHEMATICS-II Question bank (BMATE201)

- 13. Using Runge-Kutta method solve $\frac{dy}{dx} = 3x + \frac{y}{2}$ with y (0) =1, compute y (0.2) by taking
- 14. Using Runge-Kutta method find y (0.2) for the equation $\frac{dy}{dx} = \frac{y-x}{y+x}$ with y (0) =1, by taking h=0.2
- 15. Solve $\frac{dy}{dx} = x + y^2$; y (0) =1 for x=0.2(0.2)0.4 using Runge-Kutta method.
- 16. Apply Milne's method to find a solution of differential equation $y' = x y^2$ in the range $0 \le x \le 1$ for the boundary condition y=0 at x=0.
- 17. Using Milne's method find y (4.5) given $5xy' + y^2 2 = 0$ given y (4) =1. y(4.1)=1.0049, y(4.2)=1.0097, y(4.3)=1.0143, y(4.4)=1.0187.
- 18. Given $y' = x(x^2 + y^2)e^{-x}$, y(0) = 1, find y at x=0.1, 0.2 and 0.3 by Taylor's series method and compute y(0.4) by Milne's method.
- 19. Using Runge-Kutta method of order 4, find y for x=0.1, 0.2 and 0.3 given that $\frac{dy}{dx} = xy + y^2$, y (0) =1 continue the solution at x=0.4 using Milne's method.
- 20. Given $\frac{dy}{dx} = x^3 + y$, y(0)=2, the values of y(0.2)=2.073, y(0.4)=2.452 and y(0.6)=3.023. find y (0.8) by Milne's predictor-corrector method taking h=0.

SIR M. VISVESVARAYA INSTITUTE OF TECHNOLOGY, BENGALURU-562157 DEPARTMENT OF MATHEMATICS COURSE END SURVEY

COURSE:B.E

SEMESTER:2

SECTION:1D **SUBJECT CODE: :BMATE201**

BRANC H:EEE

A.Y:2023-24

SUB NAME: Mathematics-II for EEE stream

NAME OF THE FACULTY: SHUBA R N

Course Outcomes(Course skills sets)

CO1: Understand the applications of vector calculus refer to solenoidal, irrotational vectors, lineintegral and surface integral

CO2: Demonstrate the idea of Linear dependence and independence of sets in the vector space, and linear transformation

CO3: To understand the concept of Laplace transform and to solve initial value problems.

CO4: Apply the knowledge of numerical methods in solving physical and engineering phenomena

CO5: Get familiarize with modern mathematical tools namely MATHEMATICA/MATLAB/PYTHON/ SCILAB

Students are supposed to rate their experience with the Course Outcomes(CO's) listed above.

Use the scale of pointsnas given below:

LI	delow.			_	
	Levels	Excellent	Good		Average
	Points	3		2	1

		TC01	CO2	CO3	CO4	CO5	Signature
SI No USN	Student Name	C01	0	2	•	2	chool
1 1MV23EE001	ACHAL CHOURASIYA	3	3	3	3	7	Als
2 1MV23EE002	ADARSH KUMAR G M	3		2	2	2	012 200
3 1MV23EE003	ADITYA SURYA DEV N P		3	8	ч	8	AKOULHIKa
4 1MV23EE004	AKARSHIKA SRIVASTAVA	3	3	-	2	-	1
5 1MV23EE005	AMBIKA SHATAGAR	2	3	2	3	12	ann -
6 1MV23EE006	ANANYA SINGH	3	3	3	5	3	1
7 1MV23EE007	ANKIT KUMAR	3	3	3	3	3	Aut M
8 1MV23EE008	ARYA M	2	3	2	5		A

	_						
9 1MV23EE009	ARYA PRASAD S	3	3	3	3	3	a som
10 1MV23EE010	ARYAN ANILRAO DESALE	3	2	2	3	2	ARYAN
11 1MV23EE011	ASTITWA SINGH	7	3	3	7	3	Bot
12 1MV23EE012	BAIREDDY KALYANI		1			100	
13 1MV23EE013	BHARAT M HANASI	3	3	3	3	3	TO IL
14 1MV23EE014	BHASKAR SINHA	3	3	3	3	3	French
15 1MV23EE015	CHANDAN J	3	3	3	3	3	Chanden
16 1MV23EE016	CHEELAM VARUN REDDY	12	3	3	3	3	Chelan
17 1MV23EE017	DEEKSHITHA D G	3	7	3	2	2	Reports .
18 1MV23EE018	DEEPIKA E		2	2	3	3	Decab
19 1MV23EE019	DIAMOND TIRTHANKAR RAJ	3	3	3	3	3	Diamond.
20 1MV23EE020	DILEEP L	3	7	3	1	3	Riber-L
21 1MV23EE021	FIZA KOUSAR	3	3	3	3	3	1
22 1MV23EE022	G K SPOORTHI		3	3	3	3	State
23 1MV23EE023	GAYATRI	3	3	3	3	3	Cayatia
24 1MV23EE024	GIRISH T P	3	3	3	3	3	Grain-T.P
25 1MV23EE025	HEMANTH K D	2	2	3	.3		dens
26 1MV23EE026	JEEVAN	3	2	2	3	3	Kuru
27 1MV23EE027	KEERTHANA B Y	3	2	3	3	3	1
28 1MV23EE028	LAKSHMI	3	3	3	3	3	Blokeri
29 1MV23EE029	LAKSHMI H GOWDA	3	2	3	2	3	1 16
30 1MV23EE030	LAVANYA R	3	3	a	2	3	7
31 1MV23EE031	LIKHITH S R	3	1	1	1	3	MANYA
32 1MV23EE032	MAANYA S	3	2	3	2	3	14407
33 1MV23EE033	MAHAMMAD ANEEF M	3	3	3	3	3	and M
34 1MV23EE034	MANOHAR KUMAR	3	3	3	. N	१	Manhor.
35 1MV23EE035	MAYANK KUMAR	9 3	3.	1	3\$	34	1 1
36 1MV23EE036	MUSTAFA BOHRA	3	3	3	3	3	Mayank
37 1MV23EE037	NAINIKA	3	3	3	3	3	Munich
38 1MV23EE038	NANDINI APAAR	3	3	3	3	3	-
39 1MV23EE039	NANDINI ARKACHARI	3	.2	2	3	3	Nardini
40 1MV23EE040	NANDITHA R	3	3	3	3	3	MCUAN
41 1MV23EE041	NARSING	3	3	3			Toward
			ر		33	3	

1MV23FF042							1 2
1MV2255042		~	3	3	3	5	Navcen
1NAV23EEU43	NAVEEN R	. 3	3	3	3	3	Haven
11VIV23EE044	NIMISHA TRIPATHI	3	3	3	.3	2	PU
1MV23EE045			3	1	2	2	NAMES
					2		Miller
1MV23EE047			3		3	3	OVIJENSA
1MV23EE048			2			3	000
							-DOPP
			3				Punk
			2)	Person P
						2	polaska
				2			
		3		2	2		Pranot.
			2	3	3	1	Valle
1MV23EE056			3	2	2	3	Praise
1MV23EE057				3		$\overline{}$	Prolle
		1MV23EE043 NAVEEN R 1MV23EE044 NIMISHA TRIPATHI 1MV23EE045 NIMISHITH GOWDA D P 1MV23EE046 NITESH KUMAR SAH 1MV23EE047 NITISH KUMAR 1MV23EE048 OMKAR 1MV23EE049 PATEL ADITI HIRALAL 1MV23EE050 PIYUSH RATN 1MV23EE051 POOJA P 1MV23EE052 POOJA S N 1MV23EE053 PRAJWAL APPASAHEB SHINDHE 1MV23EE054 PRANAV BHARDWAJ 1MV23EE055 PRATHAM SHARMA 1MV23EE056 PRAVAAL RAJ MISHRA	1MV23EE043 NAVEEN R 1MV23EE044 NIMISHA TRIPATHI 1MV23EE045 NIMISHITH GOWDA D P 1MV23EE046 NITESH KUMAR SAH 1MV23EE047 NITISH KUMAR 1MV23EE048 OMKAR 1MV23EE049 PATEL ADITI HIRALAL 1MV23EE050 PIYUSH RATN 1MV23EE051 POOJA P 1MV23EE052 POOJA S N 1MV23EE053 PRAJWAL APPASAHEB SHINDHE 1MV23EE054 PRANAV BHARDWAJ 1MV23EE055 PRATHAM SHARMA 1MV23EE056 PRAVAAL RAJ MISHRA	1MV23EE043 NAVEEN R 3 3 1MV23EE044 NIMISHA TRIPATHI 3 3 1MV23EE045 NIMISHITH GOWDA D P 3 3 1MV23EE046 NITESH KUMAR SAH 2 3 1MV23EE047 NITISH KUMAR 3 3 1MV23EE048 OMKAR 3 3 1MV23EE049 PATEL ADITI HIRALAL 3 3 1MV23EE050 PIYUSH RATN 3 3 1MV23EE051 POOJA P 3 3 1MV23EE052 POOJA S N 3 3 1MV23EE053 PRAJWAL APPASAHEB SHINDHE 3 3 1MV23EE054 PRANAV BHARDWAJ 3 3 1MV23EE055 PRATHAM SHARMA 3 3 1MV23EE056 PRAVAAL RAJ MISHRA 3 3	1MV23EE043 NAVEEN R 3 3 3 1MV23EE044 NIMISHA TRIPATHI 3 3 3 1MV23EE045 NIMISHITH GOWDA D P 3 3 3 1MV23EE046 NITESH KUMAR SAH 2 3 2 1MV23EE047 NITISH KUMAR 3 3 3 1MV23EE048 OMKAR 3 3 3 1MV23EE049 PATEL ADITI HIRALAL 3 3 3 1MV23EE050 PIYUSH RATN 3 3 3 1MV23EE051 POOJA P 3 3 3 1MV23EE052 POOJA S N 3 3 3 1MV23EE053 PRAJWAL APPASAHEB SHINDHE 3 3 3 1MV23EE054 PRANAV BHARDWAJ 3 3 3 1MV23EE055 PRATHAM SHARMA 3 3 3 1MV23EE056 PRAVAAL RAJ MISHRA 3 3 3	1MV23EE043 NAVEEN R 3 3 3 3 1MV23EE044 NIMISHA TRIPATHI 3 3 3 3 3 1MV23EE045 NIMISHITH GOWDA D P 3 4 3 3 3 3 3 1MV23EE046 NITESH KUMAR SAH 2 3 2 3 3 <	1MV23EE043 NAVEEN R 3

Faculty

: Mrs. SHUBA.R.N

Subject

BMATE201 - Mathematics-II for Electrical & Electronics

Engineering Stream

Program Filled By

: 57

Semester : 2

Division : 2D - EE

Sr. No.	Question	Weight	Score Obtained	%		No. of st	udents who	have said	
					Excellent(5)	Very Good (4)	Good(3)	Fair(2)	Bad(1)
1	Planning of lectures and Presentation of subject matter in logical sequence	3	648	75.79	26	8	13	5	5
2	Presentation and Communication skills	3	639	74.74	24	9	14	5	5
3	Subject knowledge	3	660	77.19	26	7	17	4	3
1	Willingness to clarify doubts and provide guidance	3	630	73.68	21	13	13	4	6
5	Class Room Management	3	648	75.79	24	11	12	6	4
5	Use of Black board and other teaching aids	3	660	77.19	27	7	14	6	3
,	Preparedness for class	2	438	76.84	25	10	14	4	4
, u	Fostering punctuality through his / her example	2	430	75.44	25	7	15	7	3
)	Confidence level of the teacher	2	438	76.84	25	9	15	5	3
.0	Attire and mannerism	2	418	73.33	22	11	13	5	6
1	Overall assessment of the teacher	3	654	76.49	24	11	14	4	4
					Most of the times(5)	Rarely(3)	Never(1)		:
	Relates theory to applications of real	1	235	82.46	39	11	7		
	world problems				Always(5)	Most of the time(3)	Rarely(1)		
.3	Teaching in a way resulting in real learning / understanding and motivation	2	402	70.53	26	20	11		
	learning / understanding and				Impartial(5)	Justifiable(3)	Partial(1)		
.4	Fairness in evaluation	1	209	73.33	25	. 26	6		
					Acceptable (5)	Slow(3)	Fast(1)		
.5	Pace at which the subject is taught	2	478	83.86	44	3	10		

verall Score			
Max. Possible points	Obtained	Percentage	
	7587	76.06%	
9975	7307		

Student Feedback on Performance of Faculty || BE || Sem - 2 || 2023 - 24 | 2023-24 | SMVIT

Faculty

: Mrs. SHUBA.R.N

Subject

BMATS201 - Mathematics - II for Computer Science and Engineering Stream

Program

Filled By

Semester

Division : 21 - CS

Sr. No.	Question	Weight	Score Obtaine	d %		No. o	f students wh	o have said	
					Excellent	(5) Very Goo	Good(3)	Fair(2)	Bad(1
1	Planning of lectures and Presentation of subject matter in logical sequence	f 3	348	85.9	3 15	5	7	0	0
2	Presentation and Communication skills	3	342	84.4	4 14	6	6	1	0
3	Subject knowledge	3	345	85.19	9 14	6	7	0	0
	Willingness to clarify doubts and provide guidance	3	348	85.93	14	7	6	0	0
-	Class Room Management	3	339	83.70	14	5	7	1	0
	Use of Black board and other teaching aids	3	348	85.93	14	7	6	0	0
	Preparedness for class	2	236	87.41	16	5	6	0	0
	Fostering punctuality through his / her example	2	232	85.93	14	7	6	0	0
-	Confidence level of the teacher	2	230	85.19	15	4	8	0	0
,	Attire and mannerism	2	230	85.19	14	7	5	1	0
. (Overall assessment of the teacher	3	354	87.41	16	5	6	0	0
	No.				Most of the times(5)	Rarely(3)	Never(1)		
V	Relates theory to applications of real world problems	1	117	86.67	18	9	0		
	ooskins is a sure to				Always(5)	Most of the time(3)	Rarely(1)		
le	eaching in a way resulting in real earning / understanding and motivation	2	222	82.22	17	8	2		
Т					Impartial(5)	Justifiable(3)	Partial(1)		
Fa	airness in evaluation	1	111	82.22	15	12	0		
T	· · · · · · · · · · · · · · · · · · ·		,		Acceptable (5)	Slow(3)	Fast(1)		
Pa	ace at which the subject is taught	2	242	89.63	20	7	0		

Overall Score	e in			
Max. Possible points	Obtained	Percentage		
4725	4044	85.59%		

Printed on: 09-07-2024 11:08 AM

My Feedback Performance

Student Feedback on Performance of Faculty || BE || Sem - 2 || 2023 - 24 | 2023-24 | SMVIT

Faculty : Mrs. SHUBA.R.N

Subject

BMATS201 - Mathematics - II for Computer Science and Engineering Stream

Program

Semester

Filled By : 19

Division : 2K - CS

or. No.	Duestion		Score Obtained	%		No. of	students who	have sald		
					Excellent(5	Very Good (4)	Good(3)	Fair(2)	Bad(1	
1	Planning of lectures and Presentation of subject matter in logical sequence	3	210	73.68	5	6	5	3	0	
2	Presentation and Communication skills	3	207	72.63	4	7	5	3	0	
3	Subject knowledge	3	207	72.63	4	6	7	2	0	
4	Willingness to clarify doubts and provide guidance	3	210	73.68	5	5	7	2	0	
5	Class Room Management	. 3	204	71.58	4	7	4	4	0	
5	Use of Black board and other teaching aids	3	207	72.63	. 5	. 6	4	4	0	
7	Preparedness for class	2	140	73.68	6	5 .	4	4	0	
В	Fostering punctuality through his / her example	2	138	72.63	4	8	3	4	0	
9	Confidence level of the teacher	2	142	74.74	5	6	6	2	0	
10	Attire and mannerism	2	142	74.74	5	6	6	2	0	
11	Overall assessment of the teacher	3	225	78.95	6	7 .	5	1 .	0	
			9		Most of the times(5)	Rarely(3)	Never(1)			
12	Relates theory to applications of real world problems	.1	83	87.37	13	6	0			
					Always(5)	Most of the time(3)	Rarely(1)			
13	Teaching in a way resulting in real learning / understanding and motivation	2	122	64.21	5	11	3			
	T		70	76.84	Impartial(5)	Justifiable(3)	Partial(1)			
14	Fairness in evaluation	1	73	76.64	Acceptable (5)	Slow(3)	1 Fast(1)			
15	Pace at which the subject is taught	2	174	91.58	16	2	1			

Overall Score		
Max. Possible points	Obtained	Percentage
3325	2484	74.71%

			-										
Ī	Course Code/Course Title: BMATE201/Mathematics-II for EEE Stream Sem./Section/Branch: II/D/EEE												
	4 CREDITS (Integrated Course)												
1					TEST	S	ASSIGNMENTS			PRACTICAL			
		*****	Name	ma	me ma			4.0		theory	Practi	Total	Signatur
	koll Ne	USN		T1	T2		A1	A2		(25)	cals		of the
				15	15		10	10		25	25	50	student
	1	1MV23EE001	ACHAL CHOURASIYA	0	14	12	10	10	10	22	20	42	Achar
-	2	1MV23EE002	ADARSH KUMAR G M	5	7	6	10	10	10	16	23	39	Die
- 1			1	4			1						

	4 CREDITS (Integrated Course)											
			T	ESTS	8	ASSI	SNME	ENTS	PRACT	TICAL		
koll Ne	USN	Name	TI	T2		A1	A2		theory	1 1	Total	Signature
CONTIN	Con	- Cunic				- 7 -			(25)	cals		of the
			15	15		10	10		25	25	50	student
1	1MV23EE001	ACHAL CHOURASIYA	0	14	12	10	10	10	22	20	42	Achost
2	1MV23EE002	ADARSH KUMAR G M	5	7	6	10	10	10	16	23	39	dies.
3	1MV23EE003	ADITYA SURYA DEV N P	12	14	13	10	10	10	23	21	44	Arus .
4	1MV23EE004	ANARSHINA SDIVASTAVA	AB	10	5	10	10	10	15	14	29	AKOUSHIK
5	1MV23EE005	AMBIKA SHATAGAR	10	14	12	10	10	10	22	24	46	Ø2,
6	1MV23EE006	ANANYA SINGH	11	13	12	10	10	10	22	22	44	Arryon
7	1MV23EE007	ANKIT KUMAR	8	8	8	10	10	10	18	20	38	Autent beener
8	1MV23EE008	ARYA M	3	AB	2	8	8	8	10	1	11	2
9	1MV23EE009	ARYA PRASAD S	2	4	3	8	8	8	11	13	24	A. 38-7
10	1MV23EE010	ARYAN ANILKAU	4	9	7	10	10	10	17	10	27	
11	1MV23EE011	ASTITWA SINGH	14	10	12	10	10	10	22	18	40	18414W
12	1MV23EE012	BAIREDDY KALYANI	13	15	14	10	10	10	24	24	48	Kalyanic.
13	1MV23EE013	BHARAT M HANASI	13	14	14	10	10	10	24	23	47	though
14	1MV23EE014	BHASKAR SINHA	13	12	13	10	10	10	23	15	38	Thur
15	1MV23EE015	CHANDAN J	11	14	13	10	10	10	23	19	42	Mandan
16	1MV23EE016	CHEELANI VARUN	5	11	8	10	10	10	18	20	38	(1)
17	1MV23EE017	DEEKSHITHA D G	11	11	11	10	10	10	21	24	45	Depika.
18	1MV23EE018	DEEPIKA E	15	15	15	10	10	10	25	16	33	Diamone
19	1MV23EE019	DIAMOND TIRTHANKAR RA	6	8	7	10	10	10	17	20	35	Dilee P.L
20	1MV23EE020		0	9	5	10	10	10	15	21	45	130
21	1MV23EE021	FIZA KOUSAR	12	15	14	10	10	10		23	35	C 1 1 2
22	1MV23EE022	G K SPOORTHI	1	2	2	10	10	10	12	23		13/1

23	1MV23EE023	GAYATRI	15	15	15	10	10	10	25	24	49	Gayatro
24	1MV23EE024	GIRISH T P	3	8	6	10	10	10	16	22	38	GINAT!
25	1MV23EE025	HEMANTH K D	0	10	5	10	10	10	15	11	26	me
26	1MV23EE026	JEEVAN	2	10	6	10	10	10	16	20	36	Zu
27	1MV23EE027	KEERTHANA B Y	11	15	13	10	10	10	23	23	46	Me
28	1MV23EE028	LAKSHMI	11	11	11	10	10	10	21	20	41	dalahi
29	1MV23EE029	LAKSHMI H GOWDA	13	14	14	10	10	10	24	23	47	takahaw .
30	1MV23EE030	LAVANYA R	2	10	6	10	10	10	16	21	37	Lyon
31	1MV23EE031	LIKHITH S R	4	11	8	10	10	10	18	24	42	Litebill
32	1MV23EE032	MAANYA S	15	15	15	10	10	10	25	24	49	Khavenyaj
33	1MV23EE033	MAHAMMAD ANEEF M	2	7	5	10	10	10	15	21	36	Arneel . M
34	1MV23EE034	MANOHAR KUMAR	11	14	13	10	10	10	23	21	44	Warrepar.
35	1MV23EE035	MAYANK KUMAR	4	10	7	10	10	10	17	18	36	Mayane
36	1MV23EE036	MUSTAFA BOHRA	14	15	15	10	10	10	25	22	47	ajura
37	1MV23EE037	NAINIKA	12	10	11	10	10	10	21	24	45	Heynike
38	1MV23EE038	NANDINI APAAR	11	15	13	10	10	10	23	24	47	Nandini
39	1MV23EE039	NANDINI ARKACHARI	13	14	14	10	10	10	24	23	47	partander.
40	1MV23EE040	NANDITHA R	7	8	8	10	10	10	18	22	40	ACH2
41	1MV23EE041	NARSING	4	10	7	10	10	10	17	18	35	Alexander of the second
42	1MV23EE042	NAVEEN KUMAR	4	8	6	10	10	10	16	21	37	Javien
43	1MV23EE043	NAVEEN R	4	14	9	10.	10	10	19	22	41	Navant
44	1MV23EE044	NIMISHA TRIPATHI	6	13	10	10	10	10	20	24	44 <	Moderation
45	1MV23EE045	NIMISHITH GOWDA D P	4	15	10	10	10	10	20	15	35	Nin
46	1MV23EE046	NITESH KUMAR SAH	13	15	14	10	10	10	24	21	45	Netry
47	1MV23EE047	NITISH KUMAR	1	0	0	0	0	0	1	10	11	Nith
48	1MV23EE048	OMKAR	11	11	11	10	10	10	21	19	40	A Total
49	1MV23EE049	PATEL ADITI HIRALAL	10	5	8	10	10	10	18	24	42	Gatel.
50	1MV23EE050	PIYUSH RATN	13	15	14	10	10	10	24	23	47	Riguest

										-		
51	1MV23EE051	POOJA P	14	7	11	10	10	10	21	24	45	Main
52	1MV23EE052	POOJA S N	8	11	10	10	10	10	20	21	41	000 x 501
53	1MV23EE053	PRAJWAL APPASAHEB	8	14	11		10	10	21	23	44	And D
54	1MV23EE054	PRANAV BHARDWAJ	4	8	6	10	10	10	16	21	37	Dones.
55	1MV23EE055	PRATHAM SHARMA	5	14	10	10		10	20	22	42	Pratan
56	1MV23EE056	PRAVAAL RAJ MISHRA	5	8	7	10 10	10	10	17	21	38	PA CAALA
57	1MV23EE057	PREKSHA MUNDRA	12	13	13		10	10	23	24	47	Delala
		Signature of Staff	12	13	13	10		_	ature of		4/	100 1000
		Signature of Staff						Sign	ature or	пор		
	1											
								-			-	
						-						
	+	·										
	<u> </u>											
	ļ											
	 											
	-	<u> </u>										
	-											
	ļ											
		·										

 $\vec{-}$

RESULTS OF VTU JUNE-JULY 2024 EXAMINATION (22 SCHEME NEP)

COURSE: BE

BRANCH: ELECTRONICS & ELECTRICAL ENGG.

SEM: SECOND

ACADEMIC YEAR: 2023-24

Subject Wise Pass Percentage

Sub Code	Subject N				No of S	tudents			
	Subject Name	Allotted	Appeared	Passed	Failed	Absent	Result	Not	Pass % age
BMATE201	MATHEMATICS-II FOR EES	114	112	101			Withheld	Eligible	-
BPHYE202	APPLIED PHYSICS FOR EES	114		101	11	0	0	2	90
BEEE203	ELEMENT OF ELECTRICAL ENGINEERING	114	103	91 109	12 5	0	0	11 0	88
BPWSK206	PROFESSIONAL WRITING SKILLS IN ENGLISH	114	114	114	0	0	0	0	100
BKBKK207	BALAKE KANNADA	114	53	53					100
BKSKK207	SAMSKRUTIKA KANNADA	114	61	60	0	0	0	0	100
BIDTK258	INNOVATION AND DESIGN THINKING	114			1	0	0	0	98
BESCK204A		114	114	114	0	0	0	0	100
DESCR204A	INTRODUCTION TO CIVIL ENGINEERING	114	34	30	4	0	0	0	88
BESCK204D	INTRODUCTION TO MECHANICAL ENGINEERING	114	42	41	1	0	0	0	98
BETCK205E	RENEWABLE ENERGY SOURCES	114	73	73	0		-		
BESCK204E	INTRODUCTION TO C PROGRAMMING	114	38	36	2	0	0	0	100
BETCK205H	INTRODUCTION TO INTERNET OF THINGS (IOT)	114	35	32	3		0	0	95
BETCK205F	WASTE MANAGEMENT	0	0	0		0	0	1	91
					0	0	0	0	#DIV/0!

Overall Pass Per	Overall Pass Percentage %							
90								
114	78.95							
Number of stude	nts secured							
FCD	62							
FC	19							
SC	6							